Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The rate of penetration (ROP) is crucial for efficient and cost-effective oil well drilling. This study introduces a novel prediction method for the rate of penetration that pioneers the use of different types of drill bits and lithologies with traditional drilling parameters. Utilizing a comprehensive dataset from 12 diverse wells, it employs advanced machine learning techniques including an adaptive moment estimation-based artificial neural network for developing the algorithm. By integrating various controllable and uncontrollable drilling parameters, the random forest, decision tree, and K-nearest neighbor models demonstrated superior performance. These models achieved a coefficient of determination of approximately 98% and a mean absolute percentage error of only 3.30%, outperforming traditional models such as Maurer and Bingham, as well as other machine learning models. Using 500 testing and 2000 training data points from real-time measurements reduced the risk of overfitting and enhanced model effectiveness in different drilling environments. The predictions of the developed model can modify the input parameters to increase rate of penetration through various formations. This study highlights the importance of lithology and utilizes feature ablation analysis to transition from a black-to-white box model. Additionally, based on the predictions of this work, post-drilling analysis can reduce costs and time by only requiring surface-measured parameters and eliminates the need for extensive study on geological, laboratory, and drilling data prior to drilling activities. This integrated approach sets new standards for machine learning in drilling, representing a robust and adaptive strategy to enhance operational efficiency.

References

1.
Lyons
,
W. C.
, and
Plisga
,
G. J.
,
2011
,
Standard Handbook of Petroleum and Natural Gas Engineering
,
Elsevier
,
New York
.
2.
Barbosa
,
L. F. F. M.
,
Nascimento
,
A.
,
Mathias
,
M. H.
, and
de Carvalho
,
J. A.
,
2019
, “
Machine Learning Methods Applied to Drilling Rate of Penetration Prediction and Optimization—A Review
,”
J. Pet. Sci. Eng.
,
183
, p.
106332
.
3.
Hegde
,
C.
,
Daigle
,
H.
,
Millwater
,
H.
, and
Gray
,
K.
,
2017
, “
Analysis of Rate of Penetration (ROP) Prediction in Drilling Using Physics-Based and Data-Driven Models
,”
J. Pet. Sci. Eng.
,
159
, pp.
295
306
.
4.
Rabia
,
H.
,
1985
,
Oilwell Drilling Engineering: Principles and Practice
,
Springer Netherlands
,
Inc., London, UK
.
5.
Hossain
,
M. E.
, and
Al-Majed
,
A. A.
,
2015
,
Fundamentals of Sustainable Drilling Engineering
,
John Wiley & Sons Inc.
,
Hoboken, NJ
.
6.
Pedrosa
,
C.
,
Lund
,
B.
,
Opedal
,
N.
,
Ytrehus
,
J. D.
, and
Saasen
,
A.
,
2023
, “
Experimental Bench-Scale Study on Cuttings-Bed Erosion in Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
053101
.
7.
Black
,
A. D.
,
Bland
,
R. G.
,
Curry
,
D. A.
,
Ledgerwood
,
L. W.
,
Robertson
,
H. A.
,
Judzis
,
A.
,
Prasad
,
U.
, and
Grant
,
T.
,
2008
, Optimization of Deep Drilling Performance With Improvements in Drill Bit and Drilling Fluid Design, OnePetro.
8.
Ma
,
T.
,
Chen
,
P.
, and
Zhao
,
J.
,
2016
, “
Overview on Vertical and Directional Drilling Technologies for the Exploration and Exploitation of Deep Petroleum Resources
,”
Geomech. Geophys. Geo-Energy Geo-Resour.
,
2
(
4
), pp.
365
395
.
9.
Saadeldin
,
R.
,
Gamal
,
H.
, and
Elkatatny
,
S.
,
2023
, “
Detecting Downhole Vibrations Through Drilling Horizontal Sections: Machine Learning Study
,”
Sci. Rep.
,
13
(
1
), p.
6204
.
10.
Nour
,
M.
,
Elgibaly
,
A. A.
,
Farahat
,
M. S.
, and
Mahmoud
,
O.
,
2022
, “
Novel Torque and Drag Model for Drilling Two-Dimensional High-Angle Wells
,”
ACS Omega
,
7
(
14
), pp.
12374
12389
.
11.
Majeed
,
M. M.
, and
Alhaleem
,
A. A.
,
2019
, “
Selection of Suitable Drilling Parameters for Obtaining High Rate of Penetration in Majnoon Oilfield
,”
Iraqi J. Chem. Pet. Eng.
,
20
(
1
), pp.
65
68
.
12.
Motahhari
,
H. R.
,
Hareland
,
G.
, and
James
,
J. A.
,
2010
, “
Improved Drilling Efficiency Technique Using Integrated PDM and PDC Bit Parameters
,”
J. Can. Pet. Technol.
,
49
(
10
), pp.
45
52
.
13.
Teale
,
R.
,
1965
, “
The Concept of Specific Energy in Rock Drilling
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
2
(
1
), pp.
57
73
.
14.
Deng
,
Y.
,
Chen
,
M.
,
Jin
,
Y.
,
Zhang
,
Y.
,
Zou
,
D.
, and
Lu
,
Y.
,
2016
, “
Theoretical and Experimental Study on the Penetration Rate for Roller Cone Bits Based on the Rock Dynamic Strength and Drilling Parameters
,”
J. Nat. Gas Sci. Eng.
,
36
(
A
), pp.
117
123
.
15.
Garnier
,
A. J.
, and
van Lingen
,
N. H.
,
1959
, “
Phenomena Affecting Drilling Rates at Depth
,”
Trans. AIME
,
216
(
01
), pp.
232
239
.
16.
Maurer
,
W. C.
,
1962
, “
The ‘Perfect—Cleaning’ Theory of Rotary Drilling
,”
J. Pet. Technol.
,
14
(
11
), pp.
1270
1274
.
17.
Bingham
,
M. G.
,
1965
,
A New Approach to Interpreting–Rock Drillability
,
Petroleum Pub. Co
.
18.
Bourgoyne
,
A. T.
, Jr.
, and
Young
,
F. S.
, Jr.
,
1974
, “
A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection
,”
Soc. Pet. Eng. J.
,
14
(
04
), pp.
371
384
.
19.
Warren
,
T. M.
,
1981
, “
Drilling Model for Soft-Formation Bits
,”
J. Pet. Technol.
,
33
(
06
), pp.
963
970
.
20.
Warren
,
T. M.
,
1987
, “
Penetration-Rate Performance of Roller-Cone Bits
,”
SPE Drill. Eng.
,
2
(
01
), pp.
9
18
.
21.
Soares
,
C.
,
Daigle
,
H.
, and
Gray
,
K.
,
2016
, “
Evaluation of PDC Bit ROP Models and the Effect of Rock Strength on Model Coefficients
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1225
1236
.
22.
Ettehadi Osgouei
,
R.
,
2007
, “
Rate of Penetration Estimation Model for Directional and Horizontal Wells
,”
Master’s thesis
,
Middle East Technical University
.
23.
Robertson
,
R.
,
Deans
,
A.
,
Singh
,
K.
,
Braga
,
D.
,
Kamyab
,
M.
,
Cheatham
,
C.
, and
Borges
,
T.
,
2023
, Field Test Results for Real-Time ROP Optimization Using Machine Learning and Downhole Vibration Monitoring—A Case Study, OnePetro.
24.
Oyedere
,
M.
, and
Gray
,
K.
,
2020
, “
ROP and TOB Optimization Using Machine Learning Classification Algorithms
,”
J. Nat. Gas Sci. Eng.
,
77
, p.
103230
.
25.
Ren
,
Y.
,
Lu
,
B.
,
Zheng
,
S.
,
Bai
,
K.
,
Cheng
,
L.
,
Yan
,
H.
, and
Wang
,
G.
,
2023
, “
Research on the Rate of Penetration Prediction Method Based on Stacking Ensemble Learning
,”
Geofluids
,
2023
, p.
e6645604
.
26.
Al-Sahlanee
,
D. T.
,
Allawi
,
R. H.
,
Al-Mudhafar
,
W. J.
, and
Yao
,
C.
,
2023
, Ensemble Machine Learning for Data-Driven Predictive Analytics of Drilling Rate of Penetration (ROP) Modeling: A Case Study in a Southern Iraqi Oil Field, OnePetro.
27.
Liu
,
W.
,
Fu
,
J.
,
Tang
,
C.
,
Huang
,
X.
, and
Sun
,
T.
,
2023
, “
Real-Time Prediction of Multivariate ROP (Rate of Penetration) Based on Machine Learning Regression Algorithms: Algorithm Comparison, Model Evaluation and Parameter Analysis
,”
Energy Explor. Exploit.
,
41
(
5
), pp.
1779
1801
.
28.
Duan
,
J.
,
Zhao
,
J.
,
Xiao
,
L.
,
Yang
,
C.
, and
Chen
,
H.
,
2014
, “
A ROP Prediction Approach Based on Improved BP Neural Network
,”
2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems
,
Shenzhen, China
,
Nov. 27–29
, pp.
668
671
.
29.
Yu
,
Y.
,
Cui
,
M.
,
Huang
,
K.
,
Luo
,
L.
,
Zhang
,
X.
, and
Li
,
H.
,
2021
, “
Prediction of ROP Method Based on Online Machine Learning and Multi-Source Data Preprocessing Technology
,”
2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)
,
Shenyang, China
,
Nov. 19–21
, pp.
316
321
.
30.
Alkinani
,
H. H.
,
Al-Hameedi
,
A. T. T.
, and
Dunn-Norman
,
S.
,
2021
, “
Data-Driven Recurrent Neural Network Model to Predict the Rate of Penetration: Upstream Oil and Gas Technology
,”
Upstream Oil Gas Technol.
,
7
, p.
100047
.
31.
Khamis
,
Y. E.
,
El-Rammah
,
S. G.
, and
Salem
,
A. M.
,
2023
, “
Rate of Penetration Prediction in Drilling Operation in Oil and Gas Wells by K-Nearest Neighbors and Multi-layer Perceptron Algorithms
,”
J. Min. Environ.
,
14
(
3
), pp.
755
770
.
32.
Ghanitoos
,
H.
,
Goharimanesh
,
M.
, and
Akbari
,
A.
,
2024
, “
Prediction of Drill Penetration Rate in Drilling Oil Wells Using Mathematical and Neurofuzzy Modeling Methods
,”
Energy Rep.
,
11
, pp.
145
152
.
33.
Zhao
,
Y.
,
Noorbakhsh
,
A.
,
Koopialipoor
,
M.
,
Azizi
,
A.
, and
Tahir
,
M. M.
,
2020
, “
A New Methodology for Optimization and Prediction of Rate of Penetration During Drilling Operations
,”
Eng. Comput.
,
36
(
2
), pp.
587
595
.
34.
Soares
,
C.
, and
Gray
,
K.
,
2019
, “
Real-Time Predictive Capabilities of Analytical and Machine Learning Rate of Penetration (ROP) Models
,”
J. Pet. Sci. Eng.
,
172
, pp.
934
959
.
35.
Demšar
,
J.
, and
Zupan
,
B.
,
2021
, “
Hands-on Training About Overfitting
,”
PLoS Comput. Biol.
,
17
(
3
), p.
e1008671
.
36.
Granholm
,
V.
,
Noble
,
W. S.
, and
Käll
,
L.
,
2012
, “
A Cross-Validation Scheme for Machine Learning Algorithms in Shotgun Proteomics
,”
BMC Bioinformatics
,
13
(
16
), p.
S3
.
37.
Saud
,
A. S.
, and
Shakya
,
S.
,
2021
, “
Analysis of L2 Regularization Hyper Parameter for Stock Price Prediction
,”
J. Inst. Sci. Technol.
,
26
(
1
), pp.
83
88
.
38.
Steenkiste
,
T. V.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2019
, “
Interpretable ECG Beat Embedding Using Disentangled Variational Auto-Encoders
,”
2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)
,
Cordoba, Spain
,
June 5–7
.
39.
Xiong
,
Z.
,
Wang
,
D.
,
Liu
,
X.
,
Zhong
,
F.
,
Wan
,
X.
,
Li
,
X.
,
Li
,
Z.
, et al
,
2020
, “
Pushing the Boundaries of Molecular Representation for Drug Discovery With the Graph Attention Mechanism
,”
J. Med. Chem.
,
63
(
16
), pp.
8749
8760
.
40.
Pillai
,
V.
, and
Pirsiavash
,
H.
,
2021
, “
Explainable Models With Consistent Interpretations
,”
Proc. AAAI Conf. Artif. Intell.
,
35
(
3
), pp.
2431
2439
.
41.
Dai
,
B.
,
Shen
,
X.
, and
Pan
,
W.
,
2024
, “
Significance Tests of Feature Relevance for a Black-Box Learner
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
35
(
2
), pp.
1898
1911
.
42.
Elkatatny
,
S.
,
2021
, “
Real-Time Prediction of Rate of Penetration While Drilling Complex Lithologies Using Artificial Intelligence Techniques
,”
Ain Shams Eng. J.
,
12
(
1
), pp.
917
926
.
43.
Al-AbdulJabbar
,
A.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2021
, “
Artificial Neural Network Model for Real-Time Prediction of the Rate of Penetration While Horizontally Drilling Natural Gas-Bearing Sandstone Formations
,”
Arab. J. Geosci.
,
14
(
2
), p.
117
.
44.
Bisong
,
E.
,
2019
, “Introduction to Scikit-Learn,”
Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners
,
E.
Bisong
, ed.,
Apress
,
Berkeley, CA
, pp.
215
229
.
45.
Sundaram
,
J.
,
Gowri
,
K.
,
Devaraju
,
S.
,
Gokuldev
,
S.
,
Jayaprakash
,
S.
,
Anandaram
,
H.
,
Manivasagan
,
C.
, and
Thenmozhi
,
M.
,
2023
, “An Exploration of Python Libraries in Machine Learning Models for Data Science,”
Advanced Interdisciplinary Applications of Machine Learning Python Libraries for Data Science
,
IGI global Inc.
,
Hershey, PA
, pp.
1
31
.
46.
Tran
,
M.-K.
,
Panchal
,
S.
,
Chauhan
,
V.
,
Brahmbhatt
,
N.
,
Mevawalla
,
A.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2022
, “
Python-Based Scikit-Learn Machine Learning Models for Thermal and Electrical Performance Prediction of High-Capacity Lithium-Ion Battery
,”
Int. J. Energy Res.
,
46
(
2
), pp.
786
794
.
47.
Chicco
,
D.
,
Warrens
,
M. J.
, and
Jurman
,
G.
,
2021
, “
The Coefficient of Determination R-Squared Is More Informative Than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation
,”
PeerJ Comput. Sci.
,
7
, p.
e623
.
48.
Gelman
,
A.
,
Jakulin
,
A.
,
Pittau
,
M. G.
, and
Su
,
Y.-S.
,
2008
, “
A Weakly Informative Default Prior Distribution for Logistic and Other Regression Models
,”
Ann. Appl. Stat.
,
2
(
4
), pp.
1360
1383
.
49.
Bengio
,
Y.
,
2012
, “Practical Recommendations for Gradient-Based Training of Deep Architectures,”
Neural Networks: Tricks of the Trade
,
G.
Montavon
,
G. B.
Orr
, and
K.-R.
Müller
, eds.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
437
478
.
You do not currently have access to this content.