Abstract

The main objective of this study is to explore and compare the energy and exergy performance of main configurations of nonhybrid (conventional), hybrid (with low- and high-pressure-side booster compressor), and absorption refrigeration systems using LiBr–H2O and H2O–NH3 working solutions, with focus on their ability to efficiently utilize low-temperature driving heat under hot climate conditions and to address their limitations. At a condensing temperature of 40 °C, the nonhybrid absorption systems can operate at generator temperatures as low as 81 °C and 102 °C for LiBr–H2O and H2O–NH3 systems, respectively, with a coefficient of performance (COP) of 0.67 and 0.30, respectively. Hybridization of the absorption refrigeration units permits the operation of the LiBr–H2O generator at as low as 70 °C, and of the H2O–NH3 generator at as low as 89 °C, with COP 38% higher than that of the nonhybrid system. The high-pressure-side hybridization reduces the COP, but the low-pressure-side hybridization has a COP comparable to that of the nonhybrid system operating at higher generator temperatures. Hybridization of the system on both sides complicates it and is thus justified when heat is available only at the lower generator temperature (70 °C). Hybridization when the generator temperature exceeds 85 °C for the LiBr–H2O system, and 120 °C for the H2O–NH3 system, has no operating advantage because the simpler nonhybrid system can operate with a higher COP (0.84 versus 0.8).

References

1.
Hong
,
D.
,
Tang
,
L.
,
He
,
Y.
, and
Chen
,
G.
,
2010
, “
A Novel Absorption Refrigeration Cycle
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2045
2050
.
2.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M. A.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
.
3.
Fernández-Seara
,
J.
, and
Vázquez
,
M.
,
2001
, “
Study and Control of the Optimal Generation Temperature in NH3-H2O Absorption Refrigeration Systems
,”
Appl. Therm. Eng.
,
21
(
3
), pp.
343
357
.
4.
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
New York
.
5.
Alklaibi
,
A. M.
, and
Lior
,
N.
,
2021
, “
Waste Heat Utilization From Internal Combustion Engines for Power Augmentation and Refrigeration
,”
Renew. Sustain. Energy Rev.
,
152
, p.
111629
.
6.
Salmi
,
W.
,
Vanttola
,
J.
,
Elg
,
M.
,
Kuosa
,
M.
, and
Lahdelma
,
R.
,
2017
, “
Using Waste Heat of Ship as Energy Source for an Absorption Refrigeration System
,”
Appl. Therm. Eng.
,
115
, pp.
501
516
.
7.
Ebrahimi
,
K.
,
Jones
,
G. F.
, and
Fleischer
,
A. S.
,
2015
, “
Thermo-Economic Analysis of Steady State Waste Heat Recovery in Data Centers Using Absorption Refrigeration
,”
Appl. Energy
,
139
, pp.
384
397
.
8.
Li
,
J.
, and
Xu
,
S.
,
2013
, “
The Performance of Absorption–Compression Hybrid Refrigeration Driven by Waste Heat and Power From Coach Engine
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
747
755
.
9.
Su
,
W.
, and
Zhang
,
X.
,
2017
, “
Thermodynamic Analysis of a Compression-Absorption Refrigeration Air-Conditioning System Coupled With Liquid Desiccant Dehumidification
,”
Appl. Therm. Eng.
,
115
, pp.
575
585
.
10.
Shokati
,
N.
, and
Khanahmadzadeh
,
S.
,
2018
, “
The Effect of Different Combinations of Ammonia-Water Rankine and Absorption Refrigeration Cycles on the Exergoeconomic Performance of the Cogeneration Cycle
,”
Appl. Therm. Eng.
,
141
, pp.
1141
1160
.
11.
Zhang
,
N.
, and
Lior
,
N.
,
2007
, “
Methodology for Thermal Design of Novel Combined Refrigeration/Power Binary Fluid Systems
,”
Int. J. Refrig.
,
30
(
6
), pp.
1072
1085
.
12.
Zhang
,
N.
, and
Lior
,
N.
,
2007
, “
Development of a Novel Combined Absorption Cycle for Power Generation and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
254
265
.
13.
Wang
,
Y.
, and
Lior
,
N.
,
2011
, “
Proposal and Analysis of a High-Efficiency Combined Desalination and Refrigeration System Based on the LiBr–H2O Absorption Cycle—Part 1: System Configuration and Mathematical Model
,”
Energy Convers. Manage.
,
52
(
1
), pp.
220
222
.
14.
Wang
,
Y.
, and
Lior
,
N.
,
2011
, “
Proposal and Analysis of a High-Efficiency Combined Desalination and Refrigeration System Based on the LiBr–H2O Absorption Cycle—Part 2: Thermal Performance Analysis and Discussions
,”
Energy Convers. Manage.
,
52
(
1
), pp.
228
222
.
15.
Aphornratana
,
S.
, and
Sriveerakul
,
T.
,
2007
, “
Experimental Studies of a Single-Effect Absorption Refrigerator Using Aqueous Lithium–Bromide: Effect of Operating Condition to System Performance
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
658
669
.
16.
Kaynakli
,
O.
, and
Kılıç
,
M.
,
2007
, “
Theoretical Study on the Effect of Operating Conditions on Performance of Absorption Refrigeration System
,”
Energy Convers. Manage.
,
48
(
2
), pp.
599
607
.
17.
Florides
,
G. A.
,
Kalogirou
,
S. A.
,
Tassou
,
S. A.
, and
Wrobel
,
L. C.
,
2003
, “
Design and Construction of a LiBr–Water Absorption Machine
,”
Energy Convers. Manage.
,
44
(
15
), pp.
2483
2508
.
18.
Bereche
,
R. P.
,
Palomino
,
R. G.
, and
Nebra
,
S. A.
,
2009
, “
Thermoeconomic Analysis of a Single and Double-Effect LiBr/H2O Absorption Refrigeration System
,”
Int. J. Thermodyn.
,
12
(
2
), pp.
89
96
.
19.
Gomri
,
R.
,
2010
, “
Investigation of the Potential of Application of Single Effect and Multiple Effect Absorption Cooling Systems
,”
Energy Convers. Manage.
,
51
(
8
), pp.
1629
1636
.
20.
Mussati
,
S. F.
,
Cignitti
,
S.
,
Mansouri
,
S. S.
,
Gernaey
,
K. V.
,
Morosuk
,
T.
, and
Mussati
,
M. C.
,
2018
, “
Configuration Optimization of Series Flow Double-Effect Water-Lithium Bromide Absorption Refrigeration Systems by Cost Minimization
,”
Energy Convers. Manage.
,
158
, pp.
359
372
.
21.
Gomri
,
R.
, and
Hakimi
,
R.
,
2008
, “
Second Law Analysis of Double Effect Vapour Absorption Cooler System
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3343
3348
.
22.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2008
, “
A New Approach to the Exergy Analysis of Absorption Refrigeration Machines
,”
Energy
,
33
(
6
), pp.
890
907
.
23.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2009
, “
Advanced Exergetic Evaluation of Refrigeration Machines Using Different Working Fluids
,”
Energy
,
34
(
12
), pp.
2248
2258
.
24.
Panahizadeh
,
F.
, and
Bozorgan
,
N.
,
2011
, “
The Energy and Exergy Analysis of Single Effect Absorption Chiller
,”
Int. J. Adv. Des. Manuf. Technol.
,
4
, pp.
19
26
.
25.
You
,
D.
, and
Metghalchi
,
H.
,
2022
, “
Analysis of Aqueous Lithium Bromide Absorption Refrigeration Systems
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012015
.
26.
Lecuona
,
A.
,
Ventas
,
R.
,
Venegas
,
M.
,
Zacarías
,
A.
, and
Salgado
,
R.
,
2009
, “
Optimum Hot Water Temperature for Absorption Solar Cooling
,”
Sol. Energy
,
83
(
10
), pp.
1806
1814
.
27.
Ventas
,
R.
,
Lecuona
,
A.
,
Zacarías
,
A.
, and
Venegas
,
M.
,
2010
, “
Ammonia-Lithium Nitrate Absorption Chiller With an Integrated Low-Pressure Compression Booster Cycle for Low Driving Temperatures
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1351
1359
.
28.
Steiu
,
S.
,
Salavera
,
D.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2009
, “
A Basis for the Development of New Ammonia–Water–Sodium Hydroxide Absorption Chillers
,”
Int. J. Refrig.
,
32
(
4
), pp.
577
587
.
29.
Åhlby
,
L.
,
Hodgett
,
D.
, and
Radermacher
,
R.
,
1993
, “
NH3/H2O-LiBr as Working Fluid for the Compression/Absorption Cycle
,”
Int. J. Refrig.
,
16
(
4
), pp.
265
273
.
30.
Liang
,
Y.
,
Li
,
S.
,
Yue
,
X.
, and
Zhang
,
X.
,
2017
, “
Analysis of NH3-H2O-LiBr Absorption Refrigeration Integrated With an Electrodialysis Device
,”
Appl. Therm. Eng.
,
115
, pp.
134
140
.
31.
Modi
,
N.
,
Pandya
,
B.
, and
Patel
,
J.
,
2020
, “
Investigation of an Energy Source Temperature for NH3 + NaSCN and NH3 + LiNO3 Absorption Refrigeration Systems
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
104502
.
32.
Cai
,
D.
,
He
,
G.
,
Tian
,
Q.
, and
Tang
,
W.
,
2014
, “
Thermodynamic Analysis of a Novel Air-Cooled Non-adiabatic Absorption Refrigeration Cycle Driven by Low Grade Energy
,”
Energy Convers. Manage.
,
86
, pp.
537
547
.
33.
Kaita
,
Y.
,
2002
, “
Simulation Results of Triple-Effect Absorption Cycles
,”
Int. J. Refrig.
,
25
(
7
), pp.
999
1007
.
34.
Berdasco
,
M.
,
Vallès
,
M.
, and
Coronas
,
A.
,
2019
, “
Thermodynamic Analysis of an Ammonia/Water Absorption–Resorption Refrigeration System
,”
Int. J. Refrig.
,
103
, pp.
51
60
.
35.
Herold
,
K. E.
,
Howe
,
L. A.
, and
Radermacher
,
R.
,
1991
, “
Analysis of a Hybrid Compression—Absorption Cycle Using Lithium Bromide and Water as the Working Fluid
,”
Int. J. Refrig.
,
14
(
5
), pp.
264
272
.
36.
Boer
,
D.
,
Vallès
,
M.
, and
Coronas
,
A.
,
1998
, “
Performance of Double Effect Absorption Compression Cycles for Air-Conditioning Using Methanol–TEGDME and TFE–TEGDME Systems as Working Pairs
,”
Int. J. Refrig.
,
21
(
7
), pp.
542
555
.
37.
Wei
,
C.
,
Hao
,
X.
,
Tianjiao
,
B.
,
Bin
,
Z.
, and
Yan
,
H.
,
2022
, “
Numerical Investigation and Optimization of a Proposed Heat-Driven Compression/Absorption Hybrid Refrigeration System Combined With a Power Cycle
,”
Energy
,
246
, p.
123199
.
38.
Zhang
,
F.
,
Lei
,
F.
,
Liao
,
G.
, and
Jiaqiang
,
E.
,
2022
, “
Performance Assessment and Optimization on a Novel Geothermal Combined Cooling and Power System Integrating an Absorption Power Cycle With an Absorption-Compression Hybrid Refrigeration Cycle in Parallel
,”
Renew. Energy
,
201
, pp.
1061
1075
.
39.
Kadam
,
S. T.
,
Kyriakides
,
A.
,
Khan
,
M. S.
,
Shehabi
,
M.
,
Papadopoulos
,
A. I.
,
Hassan
,
I.
,
Rahman
,
M. A.
, and
Seferlis
,
P.
,
2021
, “
Thermo-economic and Environmental Assessment of Hybrid Vapor Compression-Absorption Refrigeration Systems for District Cooling
,”
Energy
,
243
, p.
122991
.
40.
Hong
,
S. J.
,
Lee
,
S. M.
,
Lee
,
C. H.
,
Kim
,
I. G.
, and
Park
,
C. W.
,
2019
, “
Thermally-Driven Hybrid Vapor Absorption Cycle: Simultaneous and Flexible Use of Steam Generation Heat Pump and Refrigeration Applications
,”
Energy Convers. Manage.
,
201
, p.
112100
.
41.
Hong
,
S. J.
,
Bae
,
K. J.
,
Nguyen
,
T.-N.
,
Kim
,
H. G.
,
Kim
,
I. G.
,
Kim
,
N. Y.
,
Kwon
,
O. K.
, and
Park
,
C. W.
,
2022
, “
Development of Thermally-Driven Hybrid LiBr-Water Absorption System for Simultaneously Supplying Steam and Refrigeration Effect
,”
Appl. Therm. Eng.
,
201
, p.
117792
.
42.
Wang
,
J.
,
Li
,
X.
,
Wang
,
B.
,
Wu
,
W.
,
Song
,
P.
, and
Shi
,
W.
,
2017
, “
Performance Comparison Between an Absorption-Compression Hybrid Refrigeration System and a Double-Effect Absorption Refrigeration Sys-tem
,”
Procedia Eng.
,
205
, pp.
241
247
.
43.
Mehr
,
A. S.
,
Zare
,
V.
, and
Mahmoudi
,
S. M.
,
2013
, “
Standard GAX Versus Hybrid GAX Absorption Refrigeration Cycle: From the View Point of Thermoeconomics
,”
Energy Convers. Manage.
,
76
, pp.
68
82
.
44.
Zhang
,
N.
,
Lior
,
N.
, and
Han
,
W.
,
2016
, “
Performance Study and Energy Saving Mechanism Analysis of Absorption/Compression Hybrid Refrigeration Cycles
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061603
.
45.
Dixit
,
M.
,
Arora
,
A.
, and
Kaushik
,
S. C.
,
2017
, “
Thermodynamic and Thermoeconomic Analyses of Two Stage Hybrid Absorption Compression Refrigeration System
,”
Appl. Therm. Eng.
,
113
, pp.
120
131
.
46.
Kim
,
J.-S.
,
Ziegler
,
F.
, and
Lee
,
H.
,
2002
, “
Simulation of the Compressor-Assisted Triple-Effect H2O/LiBr Absorption Cooling Cycles
,”
Appl. Therm. Eng.
,
22
(
3
), pp.
295
308
.
47.
Zheng
,
D.
, and
Meng
,
X.
,
2012
, “
Ultimate Refrigerating Conditions, Behavior Turning and a Thermodynamic Analysis for Absorption–Compression Hybrid Refrigeration Cycle
,”
Energy Convers. Manage.
,
56
, pp.
166
174
.
48.
Meng
,
X.
,
Zheng
,
D.
,
Wang
,
J.
, and
Li
,
X.
,
2013
, “
Energy Saving Mechanism Analysis of the Absorption–Compression Hybrid Refrigeration Cycle
,”
Renew. Energy
,
57
, pp.
43
50
.
49.
Han
,
W.
,
Sun
,
L.
,
Zheng
,
D.
,
Jin
,
H.
,
Ma
,
S.
, and
Jing
,
X.
,
2013
, “
New Hybrid Absorption–Compression Refrigeration System Based on Cascade Use of Mid-Temperature Waste Heat
,”
Appl. Energy
,
106
, pp.
383
390
.
50.
Colorado
,
D.
,
2019
, “
Advanced Exergy Analysis of a Compression–Absorption Cascade Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042002
.
51.
Yari
,
M.
,
Zarin
,
A.
, and
Mahmoudi
,
S. M. S.
,
2011
, “
Energy and Exergy Analyses of GAX and GAX Hybrid Absorption Refrigeration Cycles
,”
Renew. Energy
,
36
(
7
), pp.
2011
2020
.
52.
Siddiqui
,
F. R.
,
El-Shaarawi
,
M. A.
, and
Said
,
S. A.
,
2014
, “
Exergo-economic Analysis of a Solar Driven Hybrid Storage Absorption Refrigeration Cycle
,”
Energy Convers. Manage.
,
80
, pp.
165
172
.
53.
Colorado
,
D.
,
2020
, “
Advanced Exergetic Analysis of a Double-Effect Series Flow Absorption Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
104503
.
54.
Pacheco-Cedeño
,
J. S.
,
Rodríguez-Muñoz
,
J. L.
,
Ramírez-Minguela
,
J. J.
, and
Pérez-García
,
V.
,
2023
, “
Comparison of an Absorption-Compression Hybrid Refrigeration System and the Conventional Absorption Refrigeration System: Exergy Analysis
,”
Int. J. Refrig.
,
155
, pp.
81
92
.
55.
Bouaziz
,
N.
, and
Lounissi
,
D.
,
2015
, “
Energy and Exergy Investigation of a Novel Double Effect Hybrid Absorption Refrigeration System for Solar Cooling
,”
Int. J. Hydrogen Energy
,
40
(
39
), pp.
13849
13856
.
56.
Razmi
,
A.
,
Soltani
,
M.
,
Kashkooli
,
F. M.
, and
Garousi Farshi
,
L.
,
2018
, “
Energy and Exergy Analysis of an Environmentally-Friendly Hybrid Absorption/Recompression Refrigeration System
,”
Energy Convers. Manage.
,
164
, pp.
59
69
.
57.
Li
,
J.
,
Xu
,
S.
,
Kong
,
X.
,
Liu
,
K.
, and
Cui
,
F.
,
2018
, “
Experimental Study on Absorption/Compression Hybrid Refrigeration Cycle
,”
Energy
,
168
, pp.
1237
1245
. 3
58.
Liu
,
X.
,
Ye
,
Z.
,
Bai
,
L.
, and
He
,
M.
,
2019
, “
Performance Comparison of Two Absorption-Compression Hybrid Refrigeration Systems Using R1234yf/Ionic Liquid as Working Pair
,”
Energy Convers. Manage.
,
181
, pp.
319
330
.
59.
MATLAB and Statistics Toolbox Release, 2023b, The MathWorks, Inc., Natick, MA.
60.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
61.
Pátek
,
J.
, and
Klomfar
,
J.
,
2006
, “
A Computationally Effective Formulation of the Thermodynamic Properties of LiBr–H2O Solutions From 273 to 500 K Over Full Composition Range
,”
Int. J. Refrig.
,
29
(
4
), pp.
566
578
.
62.
Sun
,
D.-W.
,
1998
, “
Comparison of the Performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN Absorption Refrigeration Systems
,”
Energy Convers. Manage.
,
39
(
5–6
), pp.
357
368
.
63.
Stoecker
,
W. F.
, and
Jones
,
J. W.
,
1999
,
Refrigeration and Air-Conditioning
, 3rd ed.,
Butterworth-Heinemann
,
Oxford
.
You do not currently have access to this content.