Abstract

A particle-based pumped thermal electricity storage system stores high-temperature heat (∼1000 °C) in low-cost silica sand and generates power through an efficient power cycle. Central to this system is a counterflow direct-contact gas/particle fluidized-bed heat exchanger, which can significantly improve the heat exchange process due to the large heat transfer surface area of particles. To showcase a lab-scale 10- to 20-kWe heat exchange process with particles heating up to 300 °C, a comprehensive hydrodynamic analysis of the fluidization condition inside the heat exchanger was conducted. The heat exchanger was designed to target for heat exchange process of 10–20 kW and accommodate an air mass flow rate of 0.3–0.7 kg/s. The fluidization condition was set to maintain stable bubbling fluidization, thereby maximizing the particle-to-air heat transfer. An air distributor was designed to equally distribute air over the bed, which can avoid defluidized zones in the heat exchanger. Additionally, particle handling systems including L-valves, screw conveyors, and pneumatic conveyors were developed for the prototype heat exchanger, efficiently conveying high-temperature particles at 0.2–0.5 kg/s. This work lays the foundation for scaling up the system and integrating it into larger energy storage applications, demonstrating its potential for efficient, high-temperature thermal energy storage and power generation.

References

1.
Albertus
,
P.
,
Manser
,
J. S.
, and
Litzelman
,
S.
,
2020
, “
Long-Duration Electricity Storage Applications, Economics, and Technologies
,”
Joule
,
4
(
1
), pp.
21
32
.
2.
Ma
,
Z.
,
Wang
,
X.
,
Davenport
,
P.
,
Gifford
,
J.
,
Cook
,
K.
,
Martinek
,
J.
,
Schirck
,
J.
,
Morris
,
A.
,
Lambert
,
M.
, and
Zhang
,
R.
,
2022
, “
System and Component Development for Long-Duration Energy Storage Using Particle Thermal Energy Storage
,”
Appl. Therm. Eng.
,
216
, p.
119078
.
3.
Sergi
,
B.
,
Denholm
,
P.
,
Cole
,
W.
,
Gates
,
N.
,
Levie
,
D.
, and
Margolis
,
R.
,
2021
, “
The Curtailment Paradox in the Transition to High Solar Power Systems
,”
Joule
,
5
(
5
), pp.
1143
1167
.
4.
Schmidt
,
O.
,
Melchior
,
S.
,
Hawkes
,
A.
, and
Staffell
,
I.
,
2019
, “
Projecting the Future Levelized Cost of Electricity Storage Technologies
,”
Joule
,
3
(
1
), pp.
81
100
.
5.
Oliver
,
M. C.
,
Shah
,
M.
,
Martinek
,
J.
,
Nithyanandam
,
K.
,
Ma
,
Z.
, and
Martin
,
M. J.
,
2023
, “
Exploring the Limits of Empirical Correlations for the Design of Energy Systems With Complex Fluids: Liquid Sulfur Thermal Energy Storage as a Case Study
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
121704
.
6.
Hakamian
,
K.
,
Anderson
,
K. R.
,
Shafahi
,
M.
, and
Lakeh
,
R. B.
,
2019
, “
Thermal Design and Analysis of a Solid-State Grid-Tied Thermal Energy Storage for Hybrid Compressed Air Energy Storage Systems
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
061903
.
7.
Karasu
,
H.
, and
Dincer
,
I.
,
2018
, “
Analysis and Efficiency Assessment of Direct Conversion of Wind Energy Into Heat Using Electromagnetic Induction and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071201
.
8.
Chekifi
,
T.
,
Boukraa
,
M.
, and
Benmoussa
,
A.
,
2024
, “
Artificial Intelligence for Thermal Energy Storage Enhancement: A Comprehensive Review
,”
ASME J. Energy Resour. Technol.
,
146
(
6
), p.
060802
.
9.
Ma
,
Z.
,
Gifford
,
J.
,
Wang
,
X.
, and
Martinek
,
J.
,
2023
, “
Electric-Thermal Energy Storage Using Solid Particles as Storage Media
,”
Joule
,
7
(
5
), pp.
843
848
.
10.
Ma
,
Z.
,
Wang
,
X.
,
Davenport
,
P.
,
Gifford
,
J.
, and
Martinek
,
J.
,
2022
, “
Preliminary Component Design and Cost Estimation of a Novel Electric-Thermal Energy Storage System Using Solid Particles
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
030901
.
11.
Siegel
,
N.
,
Gross
,
M.
,
Ho
,
C.
,
Phan
,
T.
, and
Yuan
,
J.
,
2014
, “
Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications
,”
Energy Procedia
,
49
, pp.
1015
1023
.
12.
Ho
,
C. K.
,
Mills
,
B.
,
Sment
,
J.
,
Albrecht
,
K.
,
Schroeder
,
N.
, and
Laubscher
,
H.
,
2022
, “
Next-Generation Particle-Based Concentrating Solar Thermal Power
,”
Ann. Rev. Heat Transf.
,
25
(
1
), pp.
1
49
.
13.
Chung
,
K. M.
,
Zeng
,
J.
,
Adapa
,
S. R.
,
Feng
,
T.
,
Bagepalli
,
M. V.
,
Loutzenhiser
,
P. G.
,
Albrecht
,
K. J.
,
Ho
,
C. K.
, and
Chen
,
R.
,
2021
, “
Measurement and Analysis of Thermal Conductivity of Ceramic Particle Beds for Solar Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
230
, p.
111271
.
14.
Bagepalli
,
M. V.
,
Yarrington
,
J. D.
,
Schrader
,
A. J.
,
Zhang
,
Z. M.
,
Ranjan
,
D.
, and
Loutzenhiser
,
P. G.
,
2020
, “
Measurement of Flow Properties Coupled to Experimental and Numerical Analyses of Dense, Granular Flows for Solar Thermal Energy Storage
,”
Sol. Energy
,
207
, pp.
77
90
.
15.
Chen
,
C.
,
Yang
,
C.
,
Ranjan
,
D.
,
Loutzenhiser
,
P. G.
, and
Zhang
,
Z. M.
,
2020
, “
Spectral Radiative Properties of Ceramic Particles for Concentrated Solar Thermal Energy Storage Applications
,”
Int. J. Thermophys.
,
41
(
1
), pp.
1
25
.
16.
Chen
,
C.
,
Jeong
,
S. Y.
,
Ranjan
,
D.
,
Loutzenhiser
,
P. G.
, and
Zhang
,
Z. M.
,
2022
, “
Spectral Radiative Properties of Solid Particles for Concentrated Solar Power Applications
,”
Annu. Rev. Heat Transfer
,
25
(
1
), pp.
175
221
.
17.
Jeong
,
S. Y.
,
Chen
,
C.
,
Ranjan
,
D.
,
Loutzenhiser
,
P. G.
, and
Zhang
,
Z. M.
,
2021
, “
Measurements of Scattering and Absorption Properties of Submillimeter Bauxite and Silica Particles
,”
J. Quant. Spectrosc. Radiat. Transfer
,
276
, p.
107923
.
18.
Ma
,
Z.
,
Mehos
,
M.
,
Glatzmaier
,
G.
, and
Sakadjian
,
B.
,
2015
, “
Development of a Concentrating Solar Power System Using Fluidized-Bed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage
,”
Energy Procedia
,
69
, pp.
1349
1359
.
19.
Stein
,
W.
, and
Buck
,
R.
,
2017
, “
Advanced Power Cycles for Concentrated Solar Power
,”
Sol. Energy
,
152
, pp.
91
105
.
20.
Peters
,
G.
,
Golob
,
M.
,
Nguyen
,
C.
,
Jeter
,
S.
,
Danish
,
S.
,
Elleathy
,
A.
, and
Al-Ansary
,
H.
,
2020
, “
Preliminary Design of an All-Ceramic Discrete-Structure Particle Heating Receiver
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052301
.
21.
Augustine
,
C.
, and
Blair
,
N.
,
2021
, Storage Futures Study: Storage Technology Modeling Input Data Report, National Renewable Energy Lab. (NREL), Golden, CO.
22.
Forsberg
,
C.
,
Brick
,
S.
, and
Haratyk
,
G.
,
2018
, “
Coupling Heat Storage to Nuclear Reactors for Variable Electricity Output With Baseload Reactor Operation
,”
Electr. J.
,
31
(
3
), pp.
23
31
.
23.
Forsberg
,
C. W.
,
2019
, “
Variable and Assured Peak Electricity Production From Base-Load Light-Water Reactors With Heat Storage and Auxiliary Combustible Fuels
,”
Nucl. Technol.
,
205
(
3
), pp.
377
396
.
24.
Enescu
,
D.
,
Chicco
,
G.
,
Porumb
,
R.
, and
Seritan
,
G.
,
2020
, “
Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends
,”
Energies
,
13
(
2
), p.
340
.
25.
Benato
,
A.
, and
Stoppato
,
A.
,
2017
, “
Energy and Cost Analysis of a New Packed Bed Pumped Thermal Electricity Storage Unit
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020904
.
26.
Olympios
,
A. V.
,
McTigue
,
J. D.
,
Farres-Antunez
,
P.
,
Tafone
,
A.
,
Romagnoli
,
A.
,
Li
,
Y.
,
Ding
,
Y.
, et al
,
2021
, “
Progress and Prospects of Thermo-Mechanical Energy Storage—A Critical Review
,”
Prog. Energy
,
3
(
2
), p.
022001
.
27.
Novotny
,
V.
,
Basta
,
V.
,
Smola
,
P.
, and
Spale
,
J.
,
2022
, “
Review of Carnot Battery Technology Commercial Development
,”
Energies
,
15
(
2
), p.
647
.
28.
Laughlin
,
R. B.
,
2017
, “
Pumped Thermal Grid Storage With Heat Exchange
,”
J. Renewable Sustainable Energy
,
9
(
4
), p.
044103
.
29.
McTigue
,
J.
, and
Neises
,
T.
,
2024
, “
Off-Design Operation and Performance of Pumped Thermal Energy Storage
,”
J. Energy Storage
,
99
(Part A), p.
113355
.
30.
Neises
,
T.
, and
McTigue
,
J.
,
2025
, “
Design-Point Techno-Economics of Brayton Cycle PTES for Combined Heat and Power
,”
ASME J. Eng. Gas Turbines Power
,
147
(
2
), p.
021008
.
31.
ECHOGEN Power Systems
,
n.d.
, “Energy Storage,” https://www.echogen.com/energy-storage/, Accessed April 25, 2025.
32.
Smith
,
N. R.
,
Just
,
J.
,
Johnson
,
J.
, and
Karg-Bulnes
,
F.
,
2023
, “
Performance Characterization of a Small-Scale Pumped Thermal Energy Storage System
,”
Turbo Expo: Power for Land, Sea, and Air
,
Boston, MA
,
June 26–30
, Vol.
86991
.
American Society of Mechanical Engineers
, p.
V006T09A012
.
33.
Energy Dome
,
n.d.
, “CO2 Battery,” https://energydome.com/co2-battery/, Accessed April 25, 2025.
34.
Ma
,
Z.
,
McTigue
,
J.
,
Gifford
,
J.
,
Hirschey
,
J.
,
Jeong
,
S. Y.
,
Shah
,
M. P.
, and
Martinek
,
J.
,
2024
, “
System and Component Development of Particle-Based Pumped Thermal Energy Storage
,”
Energy Sustainability
,
Anaheim, CA
,
July 15–17
, Vol.
87899
,
American Society of Mechanical Engineers
, p.
V001T06A003
.
35.
Baumann
,
T.
, and
Zunft
,
S.
,
2012
, “
Theoretical and Experimental Investigation of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants
,”
J. Phys.: Conf. Ser.
,
395
(
1
), p.
012055
.
36.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2019
, “
Design and Operating Considerations for a Shell-and-Plate, Moving Packed-Bed, Particle-to-sCO2 Heat Exchanger
,”
Sol. Energy
,
178
, pp.
331
340
.
37.
McTigue
,
J. D.
,
White
,
A. J.
, and
Markides
,
C. N.
,
2015
, “
Parametric Studies and Optimisation of Pumped Thermal Electricity Storage
,”
Appl. Energy
,
137
, pp.
800
811
.
38.
McTigue
,
J.
,
Hirschey
,
J.
, and
Ma
,
Z.
,
2025
, “
Advancing Pumped Thermal Energy Storage Performance and Cost Using Silica Storage Media
,”
Appl. Energy
,
387
, p.
125567
.
39.
Ma
,
Z.
,
Gifford
,
J. C.
,
Davenport
,
P. G.
, and
Wang
,
X.
,
2023
,
Fluidized-Bed Heat Exchanger for Conversion of Thermal Energy to Electricity
,
Google Patents
, United States patent US 11,740,025.
40.
Li
,
A.
,
Jiménez
,
F. H.
,
Pleite
,
E. C.
,
Wang
,
Z.
, and
Zhu
,
L.
,
2022
, “
Numerical Comparison of Thermal Energy Performance Between Spouted, Fluidized and Fixed Beds Using Supercritical CO2 as Fluidizing Agent
,”
Case Stud. Therm. Eng.
,
39
, p.
102469
.
41.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
,
Concentrating Solar Power Gen3 Demonstration Roadmap
,
National Renewable Energy Laboratory
,
Golden, CO
. https://www.nrel.gov/docs/fy17osti/67464.pdf
42.
Sment
,
J.
,
Magaldi
,
M.
,
Repole
,
K.
,
Ho
,
C. K.
, and
Schroeder
,
N.
,
2023
, “
Design Considerations for Horizontal High-Temperature Particle Conveyance Components
,”
AIP Conf. Proc.
,
2815
(
1), p.
100013
.
43.
Sment
,
J. N.
,
Magaldi
,
M.
,
D'Agostino
,
U.
,
Bassetti
,
F.
,
Repole
,
K. K.
,
González-Portillo
,
L. F.
,
Schroeder
,
N. R.
,
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2022
, Design and Technoeconomic Analysis of High-Temperature Particle Conveyance Components for a 100 MWe Concentrating Solar Power Plant, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States).
44.
Goel
,
N.
,
Mei-Lin Fong
,
T.
,
Shingledecker
,
J. P.
,
Russell
,
A.
,
Keller
,
M. W.
,
Shirazi
,
S. A.
, and
Otanicar
,
T.
,
2021
, “
Effect of Temperature on Abrasion Erosion in Particle Based Concentrating Solar Powerplants
,”
Sol. Energy
,
224
, pp.
1127
1135
.
45.
Beverloo
,
W. A.
,
Leniger
,
H. A.
, and
Van de Velde
,
J.
,
1961
, “
The Flow of Granular Solids Through Orifices
,”
Chem. Eng. Sci.
,
15
(
3–4
), pp.
260
269
.
46.
Repole
,
K. K.
, and
Jeter
,
S. M.
,
2016
, “
Design and Analysis of a High Temperature Particulate Hoist for Proposed Particle Heating Concentrator Solar Power Systems
,”
Proceedings of the ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies
,
Charlotte, NC
,
June 26–30
, ASME, p. V001T04A020.
47.
Perry
,
J. H.
,
1950
,
Chemical Engineers' Handbook
, du Pont de Nemours and Co., Editor, Third edition. McGraw-Hill Book Co., New York.
48.
Moritz
,
M.
, and
Reddeman
,
F.
,
2023
, “
Conveying and Cooling
,”
Steel Times Int.
,
47
(
4
), pp.
69
72
.
49.
Guo
,
P.
,
Ly
,
Q. H.
,
Saw
,
W. L.
,
Lim
,
K.
,
Ashman
,
P. J.
, and
Nathan
,
G. J.
,
2019
, “
A Technical Assessment of Pneumatic Conveying of Solids for a High Temperature Particle Receiver
,”
AIP Conf. Proc.
,
2126
(
1
), p.
030025
.
50.
Flamant
,
G.
,
Grange
,
B.
,
Wheeldon
,
J.
,
Siros
,
F.
,
Valentin
,
B.
,
Bataille
,
F.
,
Zhang
,
H.
,
Deng
,
Y.
, and
Baeyens
,
J.
,
2023
, “
Opportunities and Challenges in Using Particle Circulation Loops for Concentrated Solar Power Applications
,”
Prog. Energy Combust. Sci.
,
94
, p.
101056
.
51.
Geldart
,
D.
,
1973
, “
Types of Gas Fluidization
,”
Powder Technol.
,
7
(
5
), pp.
285
292
.
52.
Cocco
,
R.
,
Karri
,
S. R.
, and
Knowlton
,
T.
,
2014
, “
Introduction to Fluidization
,”
Chem. Eng. Prog
,
110
(
11
), pp.
21
29
.
53.
Yang
,
W.-c.
,
2003
,
Handbook of Fluidization and Fluid-Particle Systems
,
CRC Press
,
Boca Raton, FL
.
54.
Lippens
,
B. C.
, and
Mulder
,
J.
,
1993
, “
Prediction of the Minimum Fluidization Velocity
,”
Powder Technol.
,
75
(
1
), pp.
67
78
.
55.
George
,
S.
, and
Grace
,
J.
,
1982
, “
Heat Transfer to Horizontal Tubes in the Freedboard Region of a Gas Fluidized Bed
,”
AIChE J.
,
28
(
5
), pp.
759
765
.
56.
Geldart
,
D.
, and
Abrahamsen
,
A. R.
,
1978
, “
Homogeneous Fluidization of Fine Powders Using Various Gases and Pressures
,”
Powder Technol.
,
19
(
1
), pp.
133
136
.
57.
Stewart
,
P. S. B.
, and
Davidson
,
J.
,
1967
, “
Slug Flow in Fluidised Beds
,”
Powder Technol.
,
1
(
2
), pp.
61
80
.
58.
Perales
,
J.
,
1991
, “On the Transition From Bublling to Fast Fluidization Regimes,”
Circulating Fluidized Bed Technology
,
P.
Basu
,
M.
Horio
, and
M.
Hasatani
, eds.,
Pergamon Press
,
Oxford, UK
, pp.
73
78
.
59.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), p.
89
.
60.
Whitaker
,
S.
,
1972
, “
Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
,”
AIChE J.
,
18
(
2
), pp.
361
371
.
61.
Scala
,
F.
,
2013
,
Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification
,
Elsevier
,
New York
.
62.
Darton
,
R. C.
,
Lanauze
,
R. D.
,
Davidson
,
J. F.
, and
Harrison
,
D.
,
1977
,
Bubble Growth Due to Coalescence in Fluidised Beds
, Trans. Inst. Chem. Eng., Vol. 55, No. 4, pp.
274
280
.
63.
Large
,
J.
,
Martinie
,
Y.
, and
Bergougnou
,
M.
,
1976
, “
Interpretive Model for Entrainment in a Large Gas-Fluidized Bed
,”
J. Powders Bulk Solids Technol. (United States)
,
1
, pp.
15
21
.
64.
Kim
,
Y. T.
,
Song
,
B. H.
, and
Kim
,
S. D.
,
1997
, “
Entrainment of Solids in an Internally Circulating Fluidized Bed With Draft Tube
,”
Chem. Eng. J.
,
66
(
2
), pp.
105
110
.
65.
Wen
,
C.
, and
Chen
,
L.
,
1982
, “
Fluidized Bed Freeboard Phenomena: Entrainment and Elutriation
,”
AIChE J.
,
28
(
1
), pp.
117
128
.
66.
Bachovchin
,
D.
,
1981
, “
An Investigation Into the Steady-State Elutriation of Fines From a Fluidized Bed
,”
AIChE Symp. Ser.
,
77
, pp.
76
85
. https://cir.nii.ac.jp/crid/1572824501319862016
67.
Tanaka
,
I.
,
1971
, “
Elutriation of Fines From Fluidized Bed-Effect of Apparatus Structure
,”
Technol. Rep. Kyushu Univ.
,
44
, pp.
406
410
. https://cir.nii.ac.jp/crid/1573668924436340224
68.
Dhodapkar
,
S.
,
Jacob
,
K.
, and
Hu
,
S.
,
2006
, “Fluid-Solid Transport in Ducts,”
Multiphase Flow Handbook
,
E.
Michaelides
,
C. T.
Crowe
, and
J. D.
Schwarzkopf
, eds.,
Taylor & Francis, CRC Press
,
Boca Raton, FL
, pp.
4
1
.
69.
Vásquez
,
N.
,
Jacob
,
K.
,
Cocco
,
R.
,
Dhodapkar
,
S.
, and
Klinzing
,
G. E.
,
2008
, “
Visual Analysis of Particle Bouncing and Its Effect on Pressure Drop in Dilute Phase Pneumatic Conveying
,”
Powder Technol.
,
179
(
3
), pp.
170
175
.
70.
Bhatia
,
A.
,
2017
,
Pneumatic Conveying Systems. Course Document
,
CED Engineering
,
Fairfax, VA
.
71.
Pan
,
R.
,
1999
, “
Material Properties and Flow Modes in Pneumatic Conveying
,”
Powder Technol.
,
104
(
2
), pp.
157
163
.
72.
Chen
,
J. C.
,
Grace
,
J. R.
, and
Golriz
,
M. R.
,
2005
, “
Heat Transfer in Fluidized Beds: Design Methods
,”
Powder Technol.
,
150
(
2
), pp.
123
132
.
73.
Knowlton
,
T. M.
, and
Hirsan
,
I.
,
1977
, “
Solids Flow Control Using a Nonmechanical L-Valve
,”
presented at the Conference: 9. Synthetic Pipeline Gas Symposium
,
Chicago, IL, USA
,
Oct. 31, 1977
. https://www.osti.gov/biblio/5069588
74.
Abraham
,
F. F.
,
1970
, “
Functional Dependence of Drag Coefficient of a Sphere on Reynolds Number
,”
The Physics of Fluids
,
13
(
8
), pp.
2194
2195
.
75.
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
2021
,
ASHRAE Handbook Fundamentals
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
,
Peachtree Corners, GA
.
You do not currently have access to this content.