Abstract

This article presents a thermoeconomic analysis of the booster-assisted ejector refrigeration cycle (BAERC), the two-stage intercooler refrigeration cycle (TSIRC), and the ejector intercooler refrigeration cycle (EIRC) utilized in low-temperature cooling applications with nanoparticle additives. The study aims to evaluate the performance and economic viability of different systems by considering both thermodynamic efficiency and cost factors. The findings provide valuable insights for optimizing refrigeration cycle designs in terms of both technical performance and economic sustainability. The total product cost flow for the BAERC, TSIRC, and EIRC systems decreased as the evaporator temperature was raised from −50 °C to −25 °C. Conversely, for the BAERC, TSIRC, and EIRC systems, the total product cost flow increased when the condenser temperature was adjusted from 45 °C to 55 °C. For a cooling capacity of 100 kW, the EIRC achieved a 9.85% reduction in total product cost flow compared to the TSIRC, while for a 10 kW cooling capacity, the reduction was 7.19%. When all the results are considered, the BAERC and EIRC cycles exhibit similar thermoeconomic performance up to a 10 kW cooling capacity. However, for cooling capacities greater than 10 kW, the EIRC cycle clearly emerges as the most thermoeconomically efficient option.

References

1.
Mosaffa
,
A. H.
,
Farshi
,
L. G.
,
Infante Ferreira
,
C. A.
, and
Rosen
,
M. A.
,
2016
, “
Exergoeconomic and Environmental Analyses of CO2/NH3 Cascade Refrigeration Systems Equipped With Different Types of Flash Tank Intercoolers
,”
Energy Convers. Manage.
,
117
, pp.
442
453
.
2.
Sanaye
,
S.
,
Emadi
,
M.
, and
Refahi
,
A.
,
2019
, “
Thermal and Economic Modeling and Optimization of a Novel Combined Ejector Refrigeration Cycle
,”
Int. J. Refrig.
,
98
, pp.
480
493
.
3.
Roy
,
R.
, and
Mandal
,
B. K.
,
2020
, “
Thermo-economic Analysis and Multi-objective Optimization of Vapour Cascade Refrigeration System Using Different Refrigerant Combinations: A Comparative Study
,”
J. Therm. Anal. Calorim.
,
139
(
5
), pp.
3247
3261
.
4.
Peris Pérez
,
B.
,
Expósito Carrillo
,
J. A.
,
Sánchez de La Flor
,
F. J.
,
Salmerón Lissén
,
J. M.
, and
Morillo Navarro
,
A.
,
2021
, “
Thermoeconomic Analysis of CO2 Ejector-Expansion Refrigeration Cycle (EERC) for Low-Temperature Refrigeration in Warm Climates
,”
Appl. Therm. Eng.
,
188
(
July 2020
).
5.
Singh
,
K. K.
,
Kumar
,
R.
, and
Gupta
,
A.
,
2021
, “
Multi-objective Optimization of Thermodynamic and Economic Performances of Natural Refrigerants for Cascade Refrigeration
,”
Arab. J. Sci. Eng.
,
46
(
12
), pp.
12235
12252
.
6.
Zeng
,
M. Q.
,
Zhang
,
X. L.
,
Mo
,
F. Y.
, and
Zhang
,
X. R.
,
2022
, “
Thermodynamic Analysis of the Effect of Internal Heat Exchanger on the Dual-Ejector Transcritical CO2 Cycle for Low-Temperature Refrigeration
,”
Int. J. Energy Res.
,
46
(
9
), pp.
12702
12721
.
7.
Nabil
,
M. H.
,
Khan
,
Y.
,
Faruque
,
M. W.
, and
Ehsan
,
M. M.
,
2023
, “
Thermo-economic Assessment of Advanced Triple Cascade Refrigeration System Incorporating a Flash Tank and Suction Line Heat Exchanger
,”
Energy Convers. Manage.
,
295
, p.
117630
.
8.
Roy
,
R.
, and
Mandal
,
B. K.
,
2023
, “
Energy, Exergy and Economic Optimization of a Two-Stage Refrigeration System Using Low-GWP Alternative Refrigerants for High-Temperature Lift Applications
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
8
), pp.
1
16
.
9.
Shanmugasundar
,
G.
,
Logesh
,
K.
,
Čep
,
R.
, and
Roy
,
R.
,
2023
, “
Evaluating Eco-friendly Refrigerant Alternatives for Cascade Refrigeration Systems: A Thermoeconomic Analysis
,”
Processes
,
11
(
6
).
10.
Yinlong
,
L.
,
Qi
,
C.
,
Guoqiang
,
L.
, and
Gang
,
Y.
,
2024
, “
Energy, Modified Exergy, Exergo-Economic and Exergo-Environmental Analyses of a Separation-Enhanced Auto-cascade Refrigeration Cycle
,”
Energy Convers. Manage.
,
299
, p.
117801
.
11.
Aktemur
,
C.
, and
Tekin Öztürk
,
İ.
,
2022
, “
Thermodynamic Performance Enhancement of Booster Assisted Ejector Expansion Refrigeration Systems With R1270/CuO Nano-refrigerant
,”
Energy Convers. Manage.
,
253
, p.
115191
.
12.
Hacıpaşaoğlu
,
S. G.
, and
Öztürk
,
İ. T.
,
2024
, “
Thermodynamic Performance Analysis and Environmental Impact Assessment of Cascade Refrigeration Cycles Using Eco-friendly Nano-refrigerants
,”
Int. J. Refrig.
,
164
, pp.
167
179
.
13.
Seckin
,
C.
,
2024
, “
Investigation on the Effects of Nanorefrigerants in a Combined Cycle of Ejector Refrigeration Cycle and Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
146
(
2
), p.
021401
.
14.
Akhayere
,
E.
,
Adebayo
,
V.
,
Adedeji
,
M.
,
Abid
,
M.
,
Kavaz
,
D.
, and
Dagbasi
,
M.
,
2023
, “
Investigating the Effects of Nanorefrigerants in a Cascaded Vapor Compression Refrigeration Cycle
,”
Int. J. Energy Environ. Eng.
,
14
(
4
), pp.
601
612
.
15.
Patel
,
H.
,
Kumar Singh
,
D.
, and
Prakash Verma
,
O.
,
2024
, “
An Examination of the Vapour Compression Refrigeration System Performance Utilizing Several Environmentally Friendly Refrigerants and the Effect of Nanoparticles—A Review
,”
Mater. Today Proc.
16.
Yılmaz
,
M.
,
Cimşit
,
C.
,
Keven
,
A.
, and
Karaali
,
R.
,
2024
, “
Energy, Exergy, Environmental, and Enviroeconomic (4E) Analysis of Cascade Vapor Compression Refrigeration Systems Using Nanorefrigerants
,”
Energy Rep.
,
12
, pp.
5521
5528
.
17.
Çengel
,
Y. A.
,
Boles
,
M. A.
, and
Kanoğlu
,
M.
,
2019
,
Thermodynamics an Engineering Approach
,
McGraw-Hill
,
New York
.
18.
Brunin
,
O.
,
Feidt
,
M.
, and
Hivet
,
B.
,
1997
, “
Comparison of the Working Domains of Some Compression Heat Pumps and a Compression-Absorption Heat Pump
.” Int. J. Refrig., 20(5), pp.
308
318
.
19.
Modi
,
N.
,
Pandya
,
B.
,
Patel
,
J.
, and
Mudgal
,
A.
,
2019
, “
Advanced Exergetic Assessment of a Vapor Compression Cycle With Alternative Refrigerants
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092002
.
20.
Alkhulaifi
,
Y. M.
, and
Mokheimer
,
E. M. A.
,
2022
, “
Thermodynamic Assessment of Using Water as a Refrigerant in Cascade Refrigeration Systems With Other Environmentally Friendly Refrigerants
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022101
.
21.
Kornhauser
,
A. A.
, 1990, “The Use of an Ejector as a Refrigerant Expander,” International Refrigeration and Air Conditioning Conference, Vol. 11.
22.
Hacipaşaoğlu
,
S. G.
, and
Tekin Öztürk
,
İ.
,
2023
, “
Energy and Exergy Analysis in the Ejector Expansion Refrigeration Cycle Under Optimum Conditions
,”
Int. Adv. Res. Eng. J.
,
7
(
1
), pp.
23
34
.
23.
Seckin
,
C.
,
2017
, “
Parametric Analysis and Comparison of Ejector Expansion Refrigeration Cycles With Constant Area and Constant Pressure Ejectors
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042006
.
24.
Atmaca
,
A. U.
,
Erek
,
A.
, and
Ekren
,
O.
,
2020
, “
Investigation of the Liquid–Vapor Separator Efficiency on the Performance of the Ejector Used as an Expansion Device in the Vapor-Compression Refrigeration Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p. 012003.
25.
Kosmadakis
,
G.
, and
Neofytou
,
P.
,
2019
, “
Investigating the Effect of Nanorefrigerants on a Heat Pump Performance and Cost-Effectiveness
,”
Therm. Sci. Eng. Prog.
,
13
.
26.
Xu
,
Y.
,
Jiang
,
N.
,
Pan
,
F.
,
Wang
,
Q.
,
Gao
,
Z.
, and
Chen
,
G.
,
2017
, “
Comparative Study on Two Low-Grade Heat Driven Absorption-Compression Refrigeration Cycles Based on Energy, Exergy, Economic and Environmental (4E) Analyses
,”
Energy Convers. Manage.
,
133
, pp.
535
547
.
27.
Misra
,
R. D.
,
Sahoo
,
P. K.
,
Sahoo
,
S.
, and
Gupta
,
A.
,
2003
, “
Thermoeconomic Optimization of a Single Effect Water/LiBr Vapour Absorption Refrigeration System
,”
Int. J. Refrig.
,
26
(
2
), pp.
158
169
.
28.
Sadeghi
,
S.
, and
Ahmadi
,
P.
,
2021
, “
Thermo-economic Optimization of a High-Performance CCHP System Integrated With Compressed Air Energy Storage (CAES) and Carbon Dioxide Ejector Cooling System
,”
Sustain. Energy Technol. Assess.
,
45
, p.
101112
.
29.
El-Sayed
,
Y. M.
,
2001
, “
Designing Desalination Systems for Higher Productivity
,”
Desalination
,
134
(
1–3
), pp.
129
158
.
30.
Dentice D’accadia
,
M.
, and
De Rossi
,
F.
,
1998
, “
Thermoeconomic Optimization of a Refrigeration Plant
,”
Int. J. Refrig.
,
21
(
1
), pp.
42
54
.
31.
Kumar Singh
,
K.
,
Kumar
,
R.
, and
Gupta
,
A.
,
2020
, “
Comparative Energy, Exergy and Economic Analysis of a Cascade Refrigeration System Incorporated With Flash Tank (HTC) and a Flash Intercooler With Indirect Subcooler (LTC) Using Natural Refrigerant Couples
,”
Sustain. Energy Technol. Assess.
,
39
, p.
100716
.
32.
Fazelpour
,
F.
, and
Morosuk
,
T.
,
2014
, “
Exergoeconomic Analysis of Carbon Dioxide Transcritical Refrigeration Machines
,”
Int. J. Refrig.
,
38
(
1
), pp.
128
139
.
33.
Wang
,
X.
, and
Dai
,
Y.
,
2016
, “
Exergoeconomic Analysis of Utilizing the Transcritical CO2 Cycle and the ORC for a Recompression Supercritical CO2 Cycle Waste Heat Recovery: A Comparative Study
,”
Appl. Energy
,
170
, pp.
193
207
.
34.
Cao
,
Y.
,
Salem
,
M.
,
Nasr
,
S.
,
Sadon
,
S. H.
,
Kumar Singh
,
P.
,
Abed
,
A. M.
,
Dahari
,
M.
,
Almoneef
,
M. M.
,
Wae-hayee
,
M.
, and
Galal
,
A. M.
,
2023
, “
A Novel Heat Recovery for a Marine Diesel Engine With Power and Cooling Outputs; Exergetic, Economic, and Net Present Value Investigation and Multi-criteria NSGA-II Optimization
,”
AIN Shams Eng. J.
,
14
(
9
).
35.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1995
,
Thermal Design and Optimization
,
John Wiley & Sons
,
Hoboken, NJ
.
36.
Sengupta
,
A.
, and
Sankar Dasgupta
,
M.
,
2023
, “
Energy and Advanced Exergoeconomic Analysis of a Novel Ejector-Based CO2 Refrigeration System and Its Optimization for Supermarket Application in Warm Climates
,”
Therm. Sci. Eng. Prog.
,
44
, p.
102056
.
37.
Ahmadi
,
P.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2014
, “
Thermoeconomic Multi-objective Optimization of a Novel Biomass-Based Integrated Energy System
,”
Energy
,
68
, pp.
958
970
.
38.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
Exergy Analysis of Single to Triple Effect Lithium Bromide-Water Vapour Absorption Cycles and Optimization of the Operating Parameters
,”
Energy Convers. Manage.
,
180
, pp.
1225
1246
.
39.
Ande
,
R.
,
Koppala
,
R. S. R.
, and
Hadi
,
M.
,
2018
, “
Experimental Investigation on VCR System Using Nano-refrigerant for COP Enhancement
,”
Chem. Eng. Trans.
,
71
, pp.
967
972
.
40.
Golbaten Mofrad
,
K.
,
Zandi
,
S.
,
Salehi
,
G.
, and
Khoshgoftar Manesh
,
M. H.
,
2020
, “
Comparative 4E and Advanced Exergy Analyses and Multi-objective Optimization of Refrigeration Cycles With a Heat Recovery System
,”
Int. J. Thermodyn.
,
23
(
3
), pp.
197
214
.
41.
Rangel-Hernández
,
V. H.
,
Belman-Flores
,
J. M.
,
Rodríguez-Valderrama
,
D. A.
,
Pardo-Cely
,
D.
,
Rodríguez-Muñoz
,
A. P.
, and
Ramírez-Minguela
,
J. J.
,
2019
, “
Exergoeconomic Performance Comparison of R1234yf as a Drop-In Replacement for R134a in a Domestic Refrigerator
,”
Int. J. Refrig.
,
100
, pp.
113
123
.
42.
Tashtoush
,
B. M.
,
Al-Nimr
,
M. A.
, and
Khasawneh
,
M. A.
,
2019
, “
A Comprehensive Review of Ejector Design, Performance, and Applications
,”
Appl. Energy
,
240
, pp.
138
172
.
43.
Nemati
,
A.
,
Nami
,
H.
, and
Yari
,
M.
,
2017
, “
Comparaison des Frigorigènes Dans un Cycle Frigorifique Transcritique à éjecteur-Détente bi-étagé, Basé sur une Analyse Environnementale et Exergo-économique
,”
Int. J. Refrig.
,
84
, pp.
139
150
.
44.
Ahmadzadeh
,
A.
,
Salimpour
,
M. R.
, and
Sedaghat
,
A.
,
2017
, “
Analyse Thermique et Exergoéconomique D’un Nouveau Système Solaire Combinant Production D’électricité et de Froid par éjecteur
,”
Int. J. Refrig.
,
83
, pp.
143
156
.
You do not currently have access to this content.