Abstract

As solar photovoltaic (PV) energy continues to emerge as a vital renewable resource, ensuring its efficiency and reliability through early fault detection is paramount. The proposed model introduces an enhanced TinySqueezeNet model, specifically optimized for identifying and classifying faults in solar photovoltaic panels using thermal and electroluminescence imaging. The TinySqueezeNet model demonstrates outstanding performance in solar fault classification, achieving an optimal balance between feature compression and expansion through its lightweight fire-module-based architecture. It efficiently handles diverse classification tasks, from binary to 12-class scenarios, with minimal computational overhead. The model's exceptional accuracy, precision, recall, and F1 scores underscore its effectiveness, while receiver operating characteristic curves and confusion matrices validate its adaptability. TinySqueezeNet achieves high accuracy with significantly fewer parameters, offering superior efficiency compared to larger models. For instance, it achieved 96% accuracy in 2-class classification with 4.06 million parameters. In 12-class tasks, it reached 89% accuracy. This efficiency and adaptability make TinySqueezeNet a robust and scalable solution for real-world solar PV fault detection and classification tasks.

References

1.
Li
,
J.
,
Niu
,
H.
,
Meng
,
F.
, and
Li
,
R.
,
2022
, “
Prediction of Short-Term Photovoltaic Power via Self-Attention-Based Deep Learning Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
101301
.
2.
Raj
,
R. D. A.
, and
Bhattacharjee
,
S.
,
2020
, “
An Inclusive Investigation of Potential Faults in Solar Photovoltaic Array
,”
2020 International Conference on Computer, Electrical & Communication Engineering (ICCECE)
,
Kolkata, India
,
Jan. 17–18
,
IEEE
, pp.
1
6
.
3.
Rim
,
B. A.
,
Mohsen
,
B. A.
, and
Oualha
,
A.
,
2024
, “
Improving Wind Power Forecast Accuracy for Optimal Hybrid System Energy Management
,”
ASME J. Energy Resour. Technol.
,
146
(
9
), p.
092101
.
4.
Alves
,
R. H. F.
,
de Deus Junior
,
G. A.
,
Marra
,
E. G.
, and
Lemos
,
R. P.
,
2021
, “
Automatic Fault Classification in Photovoltaic Modules Using Convolutional Neural Networks
,”
Renewable Energy
,
179
, pp.
502
516
.
5.
Le
,
M.
,
Luong
,
V. S.
,
Nguyen
,
D. K.
,
Dao
,
V. D.
,
Vu
,
N. H.
,
Vu
,
H. H. T.
, et al
,
2021
, “
Remote Anomaly Detection and Classification of Solar Photovoltaic Modules Based on Deep Neural Network
,”
Sustainable Energy Technol. Assess.
,
48
, p.
101545
.
6.
Zhao
,
Y.
, and
Behdad
,
S.
,
2024
, “
State-of-Health Estimation for Sustainable Electric Vehicle Batteries Using Temporal-Enhanced Self-Attention Graph Neural Networks
,”
ASME J. Energy Resour. Technol.
,
146
(
6
), p.
062102
.
7.
Tang
,
W.
,
Yang
,
Q.
,
Xiong
,
K.
, and
Yan
,
W.
,
2020
, “
Deep Learning Based Automatic Defect Identification of Photovoltaic Module Using Electroluminescence Images
,”
Sol. Energy
,
201
, pp.
453
460
.
8.
Singh
,
S.
, and
Singh
,
S.
,
2024
, “
Advancements and Challenges in Integrating Renewable Energy Sources Into Distribution Grid Systems: A Comprehensive Review
,”
ASME J. Energy Resour. Technol.
,
146
(
9
), p.
090801
.
9.
Fioresi
,
J.
,
Colvin
,
D. J.
,
Frota
,
R.
,
Gupta
,
R.
,
Li
,
M.
,
Seigneur
,
H. P.
,
Vyas
,
S.
,
Oliveira
,
S.
,
Shah
,
M.
, and
Davis
,
K. O.
,
2021
, “
Automated Defect Detection and Localization in Photovoltaic Cells Using Semantic Segmentation of Electroluminescence Images
,”
IEEE J. Photovoltaics
,
12
(
1
), pp.
53
61
.
10.
Ulucak
,
O.
,
Kocak
,
E.
,
Bayer
,
O.
,
Beldek
,
U.
,
Yapıcı
,
, and
Aylı
,
E.
,
2021
, “
Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052109
.
11.
Chen
,
X.
,
Karin
,
T.
, and
Jain
,
A.
,
2022
, “
Automated Defect Identification in Electroluminescence Images of Solar Modules
,”
Sol. Energy
,
242
, pp.
20
29
.
12.
Li
,
L.
,
Wang
,
Z.
, and
Zhang
,
T.
,
2023
, “
Gbh-yolov5: Ghost Convolution With Bottleneckcsp and Tiny Target Prediction Head Incorporating yolov5 for pv Panel Defect Detection
,”
Electronics
,
12
(
3
), p.
561
.
13.
Zhang
,
M.
, and
Yin
,
L.
,
2022
, “
Solar Cell Surface Defect Detection Based on Improved YOLO v5
,”
IEEE Access
,
10
, pp.
80804
80815
.
14.
Lu
,
S.
,
Wu
,
K.
, and
Chen
,
J.
,
2023
, “
Solar Cell Surface Defect Detection Based on Optimized YOLOv5
,”
IEEE Access
,
11
, pp.
71026
71036
. 4
15.
Bin
,
F.
,
Qiu
,
K.
,
Zheng
,
Z.
,
Lu
,
X.
,
Du
,
L.
, and
Sun
,
Q.
,
2024
, “
Investigation on a Lightweight Defect Detection Model for Photovoltaic Panel
,”
Measurement
,
236
, p.
115121
.
16.
Cao
,
Y.
,
Pang
,
D.
,
Zhao
,
Q.
,
Yan
,
Y.
,
Jiang
,
Y.
,
Tian
,
C.
,
Wang
,
F.
, and
Li
,
J.
,
2024
, “
Improved yolov8-gd Deep Learning Model for Defect Detection in Electroluminescence Images of Solar Photovoltaic Modules
,”
Eng. Appl. Artif. Intell.
,
131
, p.
107866
.
17.
Korkmaz
,
D.
, and
Acikgoz
,
H.
,
2022
, “
An Efficient Fault Classification Method in Solar Photovoltaic Modules Using Transfer Learning and Multi-Scale Convolutional Neural Network
,”
Eng. Appl. Artif. Intell.
,
113
, p.
104959
.
18.
Pamungkas
,
R. F.
,
Utama
,
I. B. K. Y.
, and
Jang
,
Y. M.
,
2023
, “
A Novel Approach for Efficient Solar Panel Fault Classification Using Coupled UDenseNet
,”
Sensors
,
23
(
10
), p.
4918
.
19.
Wu
,
S.
,
Kong
,
Y.
,
Xu
,
R.
,
Guo
,
Y.
,
Chen
,
Z.
, and
Zheng
,
X.
,
2024
, “
A Feature Space Class Balancing Strategy-Based Fault Classification Method in Solar Photovoltaic Modules
,”
Eng. Appl. Artif. Intell.
,
136
, p.
108991
.
20.
Le
,
M.
,
Le
,
D.
, and
Vu
,
H. H. T.
,
2023
, “
Thermal Inspection of Photovoltaic Modules With Deep Convolutional Neural Networks on Edge Devices in AUV
,”
Measurement
,
218
, p.
113135
.
21.
Tang
,
C.
,
Ren
,
H.
,
Xia
,
J.
,
Wang
,
F.
, and
Lu
,
J.
,
2023
, “
Automatic Defect Identification of PV Panels with IR Images Through Unmanned Aircraft
,”
IET Renewable Power Gener.
,
17
(
12
), pp.
3108
3119
.
22.
Wang
,
H.
,
Chen
,
H.
,
Wang
,
B.
,
Jin
,
Y.
,
Li
,
G.
, and
Kan
,
Y.
,
2022
, “
High-Efficiency Low-Power Microdefect Detection in Photovoltaic Cells via a Field Programmable Gate Array-Accelerated Dual-Flow Network
,”
Appl. Energy
,
318
, p.
119203
.
23.
Lee
,
S. H.
,
Yan
,
L. C.
, and
Yang
,
C. S.
,
2023
, “
LIRNet: A Lightweight Inception Residual Convolutional Network for Solar Panel Defect Classification
,”
Energies
,
16
(
5
), p.
2112
.
24.
Zhang
,
J.
,
Chen
,
X.
,
Wei
,
H.
, and
Zhang
,
K.
,
2024
, “
A Lightweight Network for Photovoltaic Cell Defect Detection in Electroluminescence Images Based on Neural Architecture Search and Knowledge Distillation
,”
Appl. Energy
,
355
, p.
122184
.
25.
Liu
,
Q.
,
Liu
,
M.
,
Wang
,
C.
, and
Wu
,
Q. M. J.
,
2024
, “
An Efficient CNN-Based Detector for Photovoltaic Module Cells Defect Detection in Electroluminescence Images
,”
Sol. Energy
,
267
, p.
112245
.
26.
Avinash
,
B.
, and
Venkatakirthiga
,
M.
,
2016
, “
FPGA Based Co-Ordinated Controller for Hybrid Power Systems
,”
2016 IEEE First International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)
,
Delhi, India
,
July 4–6
,
IEEE
, pp.
1
6
.
You do not currently have access to this content.