Abstract

This study investigates the co-pyrolysis behavior of sludge mixed with cow and chicken manure at varying fractions, analyzed at a constant heating rate of 5 °C/min. To optimize energy recovery, the objective is to assess how mixture composition influences weight loss profiles, thermal degradation patterns, and enthalpy release. The results indicate that the mixture ratio significantly affects the pyrolysis performance. For sludge–cow manure mixtures, the highest enthalpy release was observed at 30% sludge and 70% cow manure, achieving a 117% increase compared to pure sludge. Similarly, for sludge–chicken manure mixtures, the optimal ratio of 40% sludge and 60% chicken manure resulted in a 60% enhancement in the enthalpy release. Mixtures with higher sludge content exhibited reduced energy output due to their thermal properties, elevated moisture levels, and increased inorganic content, which hindered efficient thermal decomposition. Thermal analysis revealed distinct decomposition trends. Differential scanning calorimetry and mass loss data showed that lower sludge content led to sharper decomposition peaks at lower temperatures (300–350 °C), while higher sludge content resulted in broader, delayed peaks (400–550 °C). Time-dependent analysis confirmed that mixtures with lower sludge content decomposed more rapidly, whereas higher sludge content caused prolonged thermal degradation, requiring greater energy input for breakdown. These findings highlight the importance of optimizing sludge-to-manure ratios for efficient energy recovery. Using co-pyrolysis as a waste management strategy, organic waste can be converted into high-value energy resources. This approach enhances renewable energy production and contributes to environmental sustainability by reducing waste accumulation and promoting resource efficiency.

References

1.
Environmental Protection Agency
, “Environmental Protection Agency Official Website,” https://www.epa.gov. Accessed January 5, 2025.
2.
Prat
,
S. L. R.
, and
Gómez
,
A.
,
2022
, “
A Comprehensive Study of the High Temperature Pyrolysis of Sewage Sludge: Kinetics, Energy Analysis and Products Formation
,”
Global NEST
,
24
(
1
), pp.
16
28
.
3.
Intergovernmental Panel on Climate Change
, “Synthèse Rapport GIEC,” https://greenunivers.com/wp-content/uploads/2014/11/Synthèse-Rapport-Giec.pdf. Accessed February 5, 2025.
4.
Monroy
,
C.
,
Prat
,
S. L. R.
, and
Gómez
,
A.
,
2011
, “
Determination of Kinetic Parameters by Pyrolysis of Biomass Using an Optimization Algorithm Bio-Inspired
,”
8th European Congress of Chemical Engineering
,
Berlin, Germany
,
Sept. 25–29
.
5.
Demirbas
,
A.
,
2004
, “
Combustion Characteristics of Different Biomass Fuels
,”
Prog. Energy Combust. Sci.
,
30
(
2
), pp.
219
230
.
6.
Lehmann
,
J.
,
Gaunt
,
J.
, and
Rondon
,
M.
,
2006
, “
Bio-Char Sequestration in Terrestrial Ecosystems—A Review
,”
Mitig. Adapt. Strategies Global Change
,
11
(
2
), pp.
403
427
.
7.
Bridgwater
,
A.
,
2012
, “
Review of Fast Pyrolysis of Biomass and Product Upgrading
,”
Biomass Bioenergy
,
38
(
3
), pp.
68
94
.
8.
Rey
,
J.
,
Longo
,
A.
,
Rijo
,
B.
,
Pedrero
,
C.
,
Tarelho
,
L.
,
Brito
,
P.
, and
Nobre
,
C.
,
2024
, “
A Review of Cleaning Technologies for Biomass-Derived Syngas
,”
Fuel
,
377
(
0016-2361
), p.
132776
.
9.
Qureshi
,
K. M.
,
Kay Lup
,
A. N.
,
Khan
,
S.
,
Abnisa
,
F.
, and
Wan Daud
,
W. M. A.
,
2018
, “
A Technical Review on Semi-Continuous and Continuous Pyrolysis Process of Biomass to Bio-Oil
,”
J. Anal. Appl. Pyrolysis
,
131
, pp.
52
75
.
10.
da Silva Filho
,
V. F.
,
Batistella
,
L.
,
Alves
,
J. L. F.
,
Da Silva
,
J. C. G.
,
Althoff
,
C. A.
,
Moreira
,
R. F. P. M.
, and
José
,
H. J.
,
2019
, “
Evaluation of Gaseous Emissions From Thermal Conversion of a Mixture of Solid Municipal Waste and Wood Chips in a Pilot-Scale Heat Generator
,”
Renew. Energy
,
141
(
4
), pp.
402
410
.
11.
Selim
,
O. M.
,
Maache
,
M.
,
Kada
,
C.
,
Kumano
,
H.
, and
Amano
,
R. S.
,
2023
, “
Thermochemical Conversion of Cow Manure With Different Heating Rates
,”
ASME Power Applied R&D
,
Long Beach, CA
,
Sept. 25
, p.
6
.
12.
Lv
,
P.
,
Wu
,
R.
,
Wang
,
J.
,
Bai
,
Y.
,
Ding
,
L.
,
Wei
,
J.
,
Song
,
X.
, and
Yu
,
G.
,
2022
, “
Energy Recovery of Livestock Manure and Industrial Sludge by Co-Hydrocarbonisation Coupled to Pyrolysis and Gasification
,”
J. Cleaner Prod.
, p.
133996
.
13.
Czajczyńska
,
D.
,
Anguilano
,
L.
,
Ghazal
,
H.
,
Krzyżyńska
,
R.
,
Reynolds
,
A.
,
Spencer
,
N.
, and
Jouhara
,
H.
,
2017
, “
Potential of Pyrolysis Processes in the Waste Management Sector
,”
Ther. Sci. Eng. Prog.
,
3
, pp.
171
197
.
14.
Sadeghpour
,
A.
, and
Afshar
,
R. K.
,
2024
, “
Livestock Manure: From Waste to Resource in a Circular Economy
,”
J. Agric. Food Res.
,
17
(
2666-1543
), p.
101255
.
15.
Huang
,
Y.
,
Tao
,
B.
,
Lal
,
R.
,
Lorenz
,
K.
,
Jacinthe
,
P.-A.
,
Shrestha
,
R. K.
,
Bai
,
X.
,
Singh
,
M. P.
,
Lindsey
,
L. E.
, and
Ren
,
W.
,
2023
, “
A Global Synthesis of Biochar’s Sustainability in Climate-Smart Agriculture—Evidence From Field and Laboratory Experiments
,”
Renewable Sustainable Energy Rev.
,
172
, p.
113042
.
16.
Nogués
,
I.
,
Miritana
,
V.
,
Passatore
,
L.
,
Zacchini
,
M.
,
Peruzzi
,
E.
,
Carloni
,
S.
,
Pietrini
,
F.
, et al
,
2023
, “
Biochar Soil Amendment as Carbon Farming Practice in a Mediterranean Environment
,”
Geoderma Regional
,
33
, p.
e00634
.
17.
Ahmed
,
S. F.
,
Rafa
,
S. J.
,
Mehjabin
,
A.
,
Tasannum
,
N.
,
Ahmed
,
S.
,
Mofijur
,
M.
,
Lichtfouse
,
E.
,
Almomani
,
F.
,
Badruddin
,
I. A.
, and
Kamangar
,
S.
,
2023
, “
Bio-Oil From Microalgae: Materials, Production, Technique, and Future
,”
Energy Rep.
,
10
, pp.
3297
3314
.
18.
Hoyos-Sebá
,
J.
,
Arias
,
N.
,
Salcedo-Mendoza
,
J.
, and
Aristizábal-Marulanda
,
V.
,
2024
, “
Animal Manure in the Context of Renewable Energy and Value-Added Products: A Review
,”
Chem. Eng. Process.—Process Intensif.
,
196
, p.
109660
.
19.
Selim
,
O. M.
, and
Amano
,
R. S.
,
2020
, “
Co-Pyrolysis of Chicken and Cow Manure
,”
ASME J. Energy Resour. Technol.
,
143
, p.
011301
.
20.
Moško
,
J.
,
Jeremiáš
,
M.
,
Skoblia
,
S.
,
Beňo
,
Z.
,
Sikarwar
,
V. S.
,
Hušek
,
M.
,
Wang
,
H.
, and
Pohořelý
,
M.
,
2022
, “
Residual Moisture in the Sewage Sludge Feed Significantly Affects the Pyrolysis Process: Simulation of Continuous Process in a Batch Reactor
,”
J. Anal. Appl. Pyrolysis
,
161
, p.
105387
.
21.
Shoudho
,
K. N.
,
Khan
,
T. H.
,
Ara
,
U. R.
,
Khan
,
M. R.
,
Shawon
,
Z. B. Z.
, and
Hoque
,
M. E.
,
2024
, “
Biochar in Global Carbon Cycle: Towards Sustainable Development Goals
,”
Curr. Res. Green Sustainable Chem.
,
8
, p.
100409
.
22.
Pajura
,
R.
,
2024
, “
Composting Municipal Solid Waste and Animal Manure in Response to the Current Fertilizer Crisis—A Recent Review
,”
Sci. Total Environ.
,
912
, p.
169221
.
23.
Andrade
,
E. P.
,
Bonmati
,
A.
,
Esteller
,
L. J.
, and
Vallejo
,
A. A.
,
2022
, “
Assessment of Social Aspects Across Europe Resulting From the Insertion of Technologies for Nutrient Recovery and Recycling in Agriculture
,”
Sustain. Prod. Consump.
,
31
, pp.
52
66
.
24.
Zhao
,
Q.
,
Mäkinen
,
M.
,
Haapala
,
A.
, and
Jänis
,
J.
,
2020
, “
Thermochemical Conversion of Birch Bark by Temperature-Programmed Slow Pyrolysis With Fractional Condensation
,”
J. Anal. Appl. Pyrolysis
,
150
, p.
104843
.
25.
Cheung
,
K.-Y.
,
Lee
,
K.-L.
,
Lam
,
K. L.
,
Chan
,
T.-Y.
,
Lee
,
C.-W.
, and
Hui
,
D.
,
2011
, “
Operation Strategy for Multi-stage Pyrolysis
,”
J. Anal. Appl. Pyrolysis
,
91
(
05
), pp.
165
182
.
26.
Li
,
J.
,
Qiao
,
Y.
,
Zong
,
P.
,
Qin
,
S.
,
Wang
,
C.
, and
Tian
,
Y.
,
2019
, “
Fast Pyrolysis Characteristics of Two Typical Coastal Zone Biomass Fuels by Thermal Gravimetric Analyzer and Down Tube Reactor
,”
Bioresour. Technol.
,
283
, pp.
96
105
.
27.
Kada
,
C.
,
Maache
,
M.
,
Kada
,
K.
,
Selim
,
O. M.
,
Youssef
,
M. A.
, and
Amano
,
R. S.
,
2025
, “
Pyrolysis Treatment for Sludge and Animal Manures: Impact of Heating Rate
,”
ASME J. Energy Res. Technol. Part A
,
1
(
3
), p.
031502
.
28.
Das
,
B.
, and
Mohanty
,
K.
,
2019
, “
A Review on Advances in Sustainable Energy Production Through Various Catalytic Processes by Using Catalysts Derived From Waste Red Mud
,”
Renew. Energy
,
143
, pp.
1791
1811
.
29.
Al-Rumaihi
,
A.
,
Shahbaz
,
M.
,
Mckay
,
G.
,
Mackey
,
H.
, and
Al-Ansari
,
T.
,
2022
, “
A Review of Pyrolysis Technologies and Feedstock: A Blending Approach for Plastic and Biomass Towards Optimum Biochar Yield
,”
Renewable Sustainable Energy Rev.
,
167
, p.
112715
.
30.
Hussein
,
M.
,
Burra
,
K.
,
Amano
,
R. S.
, and
Gupta
,
A.
,
2017
, “
Effect of Oxygen Addition in Steam Gasification of Chicken Manure
,”
Fuel
,
189
, pp.
428
435
.
31.
Afshar
,
M.
, and
Mofatteh
,
S.
,
2024
, “
Biochar for a Sustainable Future: Environmentally Friendly Production and Diverse Applications
,”
Res. Eng.
,
23
, p.
102433
.
32.
Anae
,
J.
,
Ahmad
,
N.
,
Kumar
,
V.
,
Thakur
,
V. K.
,
Gutierrez
,
T.
,
Yang
,
X. J.
,
Cai
,
C.
,
Yang
,
Z.
, and
Coulon
,
F.
,
2021
, “
Recent Advances in Biochar Engineering for Soil Contaminated With Complex Chemical Mixtures: Remediation Strategies and Future Perspectives
,”
Sci. Total Environ.
,
767
, p.
144351
.
33.
Qi
,
J.
,
Yang
,
H.
,
Wang
,
X.
,
Zhu
,
H.
,
Wan
,
Z.
,
Zhao
,
C.
,
Li
,
B.
, and
Liu
,
Z.
,
2023
, “
State-of-the-Art on Animal Manure Pollution Control and Resource Utilization
,”
J. Environ. Chem. Eng.
,
11
, p.
110462
.
34.
Gu
,
W.
,
Guo
,
J.
,
Bai
,
J.
,
Dong
,
B.
,
Hu
,
J.
,
Zhuang
,
X.
,
Zhang
,
C.
, and
Shih
,
K.
,
2022
, “
Co-Pyrolysis of Sewage Sludge and Ca(H2PO4)2: Heavy Metal Stabilization, Mechanism, and Toxic Leaching
,”
J. Environ. Manage.
,
305
, p.
114292
.
35.
Lui
,
J.
,
Chen
,
W.-H.
,
Tsang
,
D. C.
, and
You
,
S.
,
2020
, “
A Critical Review on the Principles, Applications, and Challenges of Waste-to-Hydrogen Technologies
,”
Renewable Sustainable Energy Rev.
,
134
, p.
110365
.
36.
Achkir
,
A.
,
Aouragh
,
A.
,
El Mahi
,
M.
,
Lotfi
,
E. M.
,
Labjar
,
N.
,
EL Bouch
,
M.
,
Ouahidi
,
M. L.
,
Badza
,
T.
,
Farhane
,
H.
, and
EL Moussaoui
,
T.
,
2023
, “
Implication of Sewage Sludge Increased Application Rates on Soil Fertility and Heavy Metals Contamination Risk
,”
Emerg. Contamin.
,
9
, p.
100200
.
37.
Hassan
,
F.
,
Prasetya
,
K. D.
,
Hanun
,
J. N.
,
Bui
,
H. M.
,
Rajendran
,
S.
,
Kataria
,
N.
,
Khoo
,
K. S.
,
Wang
,
Y.-F.
,
You
,
S.-J.
, and
Jiang
,
J.-J.
,
2023
, “
Microplastic Contamination in Sewage Sludge: Abundance, Characteristics, and Impacts on the Environment and Human Health
,”
Environ. Technol. Innov.
,
31
, p.
103176
.
38.
Zhang
,
D.
,
Chen
,
C.
,
Zhao
,
M. Q.
,
Chen
,
P. G.
, and
Cheng
,
Y. H.
,
2018
, “
Anaerobic Digestion of Food Waste: Challenges and Opportunities
,”
Bioresour. Technol.
,
247
, pp.
1047
1058
.
39.
Dadrasnia
,
A.
,
de Bona Muñoz
,
I.
,
Yáñez
,
E. H.
,
Lamkaddam
,
I. U.
,
Mora
,
M.
,
Ponsá
,
S.
,
Ahmed
,
M.
,
Argelaguet
,
L. L.
,
Williams
,
P. M.
, and
Oatley-Radcliffe
,
D. L.
,
2021
, “
Sustainable Nutrient Recovery From Animal Manure: A Review of Current Best Practice Technology and the Potential for Freeze Concentration
,”
J. Cleaner Prod.
,
315
, p.
128106
.
40.
Balcioglu
,
G.
,
Jeswani
,
H. K.
, and
Azapagic
,
A.
,
2022
, “
Evaluating the Environmental and Economic Sustainability of Energy From Anaerobic Digestion of Different Feedstocks in Turkey
,”
Sustainable Prod. Consump.
,
32
, pp.
924
941
.
You do not currently have access to this content.