Abstract

To improve the thermal efficiency of marine engines and reduce NOX emission, the heat of waste gas is recycled to heat cracking methanol and the diesel micro-injection ignition method. The effects of methanol cracking gas and diesel injection timing on the performance of a compression-ignition diesel engine (cylinder diameter—137.2 mm, cylinder stroke—165.1 mm, and rated speed—910 rpm) are studied by converge simulation. The results show that the NOX emission and the indicated mean effective pressure (IMEP) increase with the increase of the blending ratios of methanol cracking gas. With delayed fuel injection timing, combustion becomes more concentrated, leading to increase in the IMEP and the indicated thermal efficiency. However, NOX emission also rises. As the injection timing is further delayed, NOX emission decreases. When the methanol substitution ratio is 94%, the methanol cracking gas blending ratio is 20%, and the injection timing is −4 °CA ATDC. This also causes NOX emission to reach 3.63 g/kW h with a 46.04% indicated thermal efficiency. These values are 22.64% lower and 4.44% higher, respectively, compared to the original diesel engine, while hydrocarbon and carbon monoxide emissions are nearly completely burned. The influence of the methanol cracking gas blending ratio and fuel injection timing parameter optimizations on the engine combustion and emission performance provides a theoretical basis for the study of methanol cracking gas blending marine engines.

References

1.
Reitz
,
R. D.
,
Ogawa
,
H.
,
Payri
,
R.
,
Fansler
,
T.
,
Kokjohn
,
S.
,
Moriyoshi
,
Y.
,
Agarwal
,
A. K.
, et al
,
2020
, “
IJER Editorial: The Future of the Internal Combustion Engine
,”
Int. J. Engine Res.
,
21
(
1
), pp.
3
10
.
2.
Yasar
,
A.
,
Kul
,
B. S.
, and
Ciniviz
,
M.
,
2022
, “
Modeling the Performance of Fuzzy Expert System for Prediction of Combustion, Engine Performance, and Exhaust Emission Parameters of a Spark Ignition Engine Fueled With Waste Bread Bioethanol-Gasoline Blends
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
122305
.
3.
Balki
,
M. K.
,
Sayin
,
C.
, and
Sarıkaya
,
M.
,
2016
, “
Optimization of the Operating Parameters Based on Taguchi Method in an SI Engine Used Pure Gasoline, Ethanol and Methanol
,”
Fuel
,
180
, pp.
630
637
.
4.
Yilmaz
,
İ
, and
Taştan
,
M.
,
2018
, “
Investigation of Hydrogen Addition to Methanol-Gasoline Blends in an SI Engine
,”
Int. J. Hydrogen Energy
,
43
(
44
), pp.
20252
20261
.
5.
Verhelst
,
S.
,
Turner
,
W. G. J.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.
6.
Shu
,
J.
,
Fu
,
J.
,
Ren
,
C.
,
Liu
,
J.
,
Wang
,
S.
, and
Feng
,
S.
,
2020
, “
Numerical Investigation on Flow and Heat Transfer Processes of Novel Methanol Cracking Device for Internal Combustion Engine Exhaust Heat Recovery
,”
Energy
,
195
, p.
116954
.
7.
Shi
,
X.
,
Jiang
,
Y.
,
Wang
,
Q.
,
Qian
,
W.
,
Huang
,
R.
, and
Ni
,
J.
,
2022
, “
Three-Dimensional Simulation Analysis of the Effect of Hydrous Ethanol and Exhaust Gas Recirculation on Gasoline Direct Injection Engine Combustion and Emissions
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082304
.
8.
Stępień
,
Z.
,
2021
, “
A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges
,”
Energies
,
14
(
20
), p.
6504
.
9.
Gainey
,
B.
,
Yan
,
Z.
, and
Lawler
,
B.
,
2021
, “
Autoignition Characterization of Methanol, Ethanol, Propanol, and Butanol Over a Wide Range of Operating Conditions in LTC/HCCI
,”
Fuel
,
287
, p.
119495
.
10.
Wang
,
X.
,
Gao
,
J.
,
Chen
,
H.
,
Chen
,
Z.
,
Zhang
,
P.
, and
Chen
,
Z.
,
2022
, “
Diesel/Methanol Dual-Fuel Combustion: An Assessment of Soot Nanostructure and Oxidation Reactivity
,”
Fuel Process. Technol.
,
237
, p.
107464
.
11.
Matthias
,
N. S.
,
Wallner
,
T.
, and
Scarcelli
,
R.
,
2012
, “
A Hydrogen Direct Injection Engine Concept That Exceeds U.S. DOE Light-Duty Efficiency Targets
,”
SAE Int. J. Engines
,
5
(
3
), pp.
838
849
.
12.
Musy
,
F.
,
Ortiz
,
R.
,
Ortiz
,
I.
, and
Ortiz
,
A.
,
2024
, “
Hydrogen-Fuelled Internal Combustion Engines: Direct Injection Versus Port-Fuel Injection
,”
Int. J. Hydrog. Energy
,
49
(
2
).
13.
Tang
,
X.
,
Kabat
,
D. M.
,
Natkin
,
R. J.
,
Stockhausen
,
W. F.
, and
Heffel
,
J.
,
2002
, “
Ford P2000 Hydrogen Engine Dynamometer Development
,”
SAE Int. J. Engines
.
14.
Yin
,
Z.
,
Cai
,
W.
,
Zhang
,
Z.
,
Deng
,
Z.
, and
Li
,
Z.
,
2022
, “
Effects of Hydrogen-Rich Products From Methanol Steam Reforming on the Performance Enhancement of a Medium-Speed Marine Engine
,”
Energy
,
256
, p.
124540
.
15.
Li
,
B.
,
Chen
,
Y.
,
Zhong
,
F.
, and
Xu
,
H.
,
2023
, “
Numerical Study on a Diesel/Dissociated Methanol Gas Compression Ignition Engine With Exhaust Gas Recirculation
,”
Appl. Sci.
,
13
(
17
), p.
9612
.
16.
Jiang
,
Y.
,
Chen
,
Y.
, and
Xie
,
M.
,
2022
, “
Effects of Blending Dissociated Methanol Gas With the Fuel in Gasoline Engine
,”
Energy
,
247
, p.
123494
.
17.
Ji
,
C.
,
Su
,
T.
,
Wang
,
S.
,
Zhang
,
B.
,
Yu
,
M.
, and
Cong
,
X.
,
2016
, “
Effect of Hydrogen Addition on Combustion and Emissions Performance of a Gasoline Rotary Engine at Part Load and Stoichiometric Conditions
,”
Energy Convers. Manage.
,
121
, pp.
272
280
.
18.
Wu
,
H. W.
,
Hsu
,
T. T.
,
Fan
,
C. M.
, and
He
,
P.-H.
,
2018
, “
Reduction of Smoke, PM2.5, and NOX of a Diesel Engine Integrated With Methanol Steam Reformer Recovering Waste Heat and Cooled EGR
,”
Energy Convers. Manage.
,
172
, pp.
567
578
.
19.
Saha
,
D.
,
Roy
,
B.
, and
Kundu
,
P. P.
,
2024
, “
Influence of Injection Timing Variation on Combustion-Emission-Performance Aspects of Emulsified Plastic Oil-Run Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
146
(
9
), p.
091201
.
20.
Xu
,
G. F.
,
García
,
A.
,
Jia
,
M.
, and
Monsalve-Serrano
,
J.
,
2021
, “
Computational Optimization of the Piston Bowl Geometry for the Different Combustion Regimes of the Dual-Mode Dual-Fuel (DMDF) Concept Through an Improved Genetic Algorithm
,”
Energy Convers. Manage.
,
246
, p.
114658
.
21.
Shirvani
,
S.
,
Shirvani
,
S.
,
Shamekhi
,
A. H.
,
Reitz
,
R.
, and
Salehi
,
F.
,
2021
, “
Meeting EURO 6 Emission Regulations by Multi-objective Optimization of the Injection Strategy of Two Direct Injectors in a DDFS Engine
,”
Energy
,
229
, p.
120737
.
22.
Li
,
Y.
,
Cai
,
Y.
,
Jia
,
M.
,
Wang
,
Y.
,
Su
,
X.
, and
Li
,
L.
,
2024
, “
A Full-Parameter Computational Optimization of Both Injection Parameters and Injector Layouts for a Methanol/Diesel Dual-Fuel Direct Injection Compression Ignition Engine
,”
Fuel
,
369
, p.
131733
.
23.
Jayaprabakar
,
J.
,
Arunkumar
,
T.
,
Senthil Kumar
,
P.
,
Mariadhas
,
A.
,
Appavu
,
P.
, and
Rangasamy
,
G.
,
2023
, “
Performance Analysis on a Compression Ignition Engine Fueled With Algae, Rice Bran Methyl Esters, and Their Diesel Blends at Optimized Blend Proportion, Injection Timing and Load
,”
Fuel
,
344
, p.
128024
.
24.
Chandrashekar
,
J.
, and
Gumtapure
,
V.
,
2022
, “
Experimental Study on the Effect of Injection Timing on a Dual Fuel Diesel Engine Operated With Biogas Derived From Food Waste
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
122303
.
25.
Zhu
,
Z.
,
Mu
,
Z.
,
Wei
,
Y.
,
Du
,
R.
, and
Liu
,
S.
,
2022
, “
Experimental Evaluation of Performance of Heavy-Duty SI Pure Methanol Engine With EGR
,”
Fuel
,
325
, p.
124948
.
26.
Singh
,
A. P.
,
Sonawane
,
U.
, and
Agarwal
,
A. K.
,
2022
, “
Methanol/Ethanol/Butanol-Gasoline Blends Use in Transportation Engine-Part 1: Combustion, Emissions, and Performance Study
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102304
.
27.
Li
,
Y.
,
Li
,
H.
,
Guo
,
H.
,
Li
,
Y.
, and
Yao
,
M.
,
2017
, “
A Numerical Investigation on Methane Combustion and Emissions From a Natural Gas-Diesel Dual Fuel Engine Using CFD Model
,”
Appl. Energy
,
205
, pp.
153
162
.
28.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
Mcdavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE Int.
,
111
(
4
), pp.
2461
2466
.
29.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
30.
O'rourke
P. J.
, and
Amsden
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,”
SAE Trans.
,
109
(
3
), pp.
281
298
.
31.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomiz. Sprays
,
9
(
6
), pp.
623
650
.
32.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
33.
Han
,
Z. Y.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.
34.
Li
,
J.
,
Zhao
,
Z. W.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
(
3
), pp.
109
136
.
35.
Li
,
Z.
,
Wang
,
Y.
,
Yin
,
Z.
,
Gao
,
Z.
,
Wang
,
Y.
, and
Zhen
,
X.
,
2021
, “
Parametric Study of a Single-Channel Diesel/Methanol Dual-Fuel Injector on a Diesel Engine Fueled With Directly Injected Methanol and Pilot Diesel
,”
Fuel
,
302
, p.
121156
.
36.
Maroteaux
,
F.
, and
Saad
,
C.
,
2015
, “
Combined Mean Value Engine Model and Crank Angle Resolved in-Cylinder Modeling With NOx Emissions Model for Real-Time Diesel Engine Simulations at High Engine Speed
,”
Energy
,
88
, pp.
515
527
.
You do not currently have access to this content.