Graphical Abstract Figure

Key parameters of a hydrogen-induced CRDI CI engine running on ethanol-diesel blends

Graphical Abstract Figure

Key parameters of a hydrogen-induced CRDI CI engine running on ethanol-diesel blends

Close modal

Abstract

This study investigates the simultaneous incorporation of ethanol and hydrogen (H2) as a potential alternative to conventional diesel in a common rail direct injection compression ignition engine. Ethanol was blended with diesel in varying proportions (10–40%) and investigated at three H2 flowrates (5, 10, and 15 LPM). The results reveal a complex interplay between combustion characteristics, performance, and emissions. Increasing ethanol content reduced peak cylinder pressure and net heat release rate across all H2 flowrates, while higher H2 flowrates improved these metrics for specific blends. The brake thermal efficiency (BTE) improved with increasing H2 flowrates. Additionally, brake-specific fuel consumption (BSFC), carbon monoxide (CO), unburnt hydrocarbon (HC), and smoke emissions decreased with the addition of H2. However, at a specific H2 rate, these parameters increased with higher ethanol percentages, while nitrogen oxide (NOx) emissions followed an opposite trend. Overall, substituting 30% diesel with ethanol and incorporating 15 lpm H2 (D70E30 + 15 LPM H2) resulted in higher BTE and reduced BSFC, CO, HC, smoke emissions, and NOx emissions comparable to that of neat diesel.

References

1.
Kapoor
,
M.
,
Narrendra
,
K.
,
Verma
,
A. S.
,
Gaurav
,
G.
, and
Padap
,
A. K.
,
2020
, “
Performance and Emission Analysis of Compression Ignition Engine With Neem Methyl Ester Mixed With Cerium Oxide (CeO2) Nanoparticles
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082308
.
2.
Ashok
,
B.
,
Jeevanantham
,
A. K.
,
Prabhu
,
K.
,
Shirude
,
P. M.
,
Shinde
,
D. D.
,
Nadgauda
,
N. S.
, and
Karthick
,
C.
,
2021
, “
Multi-Objective Optimization on Vibration and Noise Characteristics of Light Duty Biofuel Powered Engine at Idling Condition Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042301
.
3.
Liu
,
R.
,
Huang
,
K.
,
Qiao
,
Y.
,
Wang
,
Z.
, and
Ji
,
H.
,
2022
, “
Combustion Performance Investigation of Aviation Kerosene (RP-3) on a Compression Ignition Diesel Engine Under Various Loads
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032308
.
4.
Saha
,
D.
,
Roy
,
B.
, and
Kundu
,
P.
,
2024
, “
Influence of Injection Timing Variation on Combustion-Emission-Performance Aspects of Emulsified Plastic Oil-Run Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
146
(
9
), p.
091201
.
5.
Saha
,
D.
,
Roy
,
B.
, and
Kundu
,
P.
,
2024
, “
Areca Nut Husk Nanoadditive for Compression Ignition Engine: Characterisation, Energy-Exergy-Exergoeconomic, and Sustainability Analyses
,”
J. Therm. Anal. Calorim.
,
149
(
21
), pp.
12385
12398
.
6.
Ashok
,
A.
,
Gugulothu
,
S. K.
,
Reddy
,
R. V.
, and
Ravi
,
H.
,
2022
, “
Box-Behnken Response Surface Methodology Based Multi-Objective Optimization on Reactivity Controlled Compression Ignition Engine Characteristics Powered With Ternary Fuel
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
122304
.
7.
Thiyagarajan
,
S.
,
Varuvel
,
E.
,
Karthickeyan
,
V.
,
Sonthalia
,
A.
,
Kumar
,
G.
,
Saravanan
,
C. G.
,
Dhinesh
,
B.
, and
Pugazhendhi
,
A.
,
2022
, “
Effect of Hydrogen on Compression-Ignition (CI) Engine Fueled With Vegetable Oil/Biodiesel From Various Feedstocks: A Review
,”
Int. J. Hydrogen Energy
,
47
(
88
), pp.
37648
37667
.
8.
Wang
,
S.
,
Zhang
,
Z.
,
Hou
,
X.
,
Lv
,
J.
,
Lan
,
G.
,
Yang
,
G.
, and
Hu
,
J.
,
2023
, “
The Environmental Potential of Hydrogen Addition as Complementation for Diesel and Biodiesel: A Comprehensive Review and Perspectives
,”
Fuel
,
342
, p.
127794
.
9.
Panithasan
,
M. S.
,
Gopalakichenin
,
D.
,
Venkadesan
,
G.
, and
Malairajan
,
M.
,
2020
, “
Evaluating the Working Characters of a Diesel Engine Fueled With Biodiesel Blends Added With Rice Husk Nano Particles
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
46
(
1
), pp.
8528
8546
.
10.
Lešnik
,
L.
,
Vajda
,
B.
,
Žunič
,
Z.
,
Škerget
,
L.
, and
Kegl
,
B.
,
2013
, “
The Influence of Biodiesel Fuel on Injection Characteristics, Diesel Engine Performance, and Emission Formation
Appl. Energy
,
111
, pp.
558
570
.
11.
Gadwal
,
S. B.
,
Banapurmath
,
N. R.
,
Kamoji
,
M. A.
,
Rampure
,
P. B.
, and
Khandal
,
S. V.
,
2019
, “
Performance and Emission Characteristic Studies on CRDI Diesel Engine Fuelled With Plastic Pyrolysis Oil Blended With Ethanol and Diesel
,”
Int. J. Sustainable. Eng.
,
12
(
4
), pp.
262
271
.
12.
Saha
,
D.
, and
Roy
,
B.
,
2023
, “
Plastic-Grocery-Bag-Derived Oil and Its Emulsion for Compression Ignition Engine Application: Emulsion Characteristics and Combustion-Performance-Emission Analysis
,”
J. Therm. Anal. Calorim.
,
148
(
24
), pp.
13929
13940
.
13.
Gopan
,
G.
,
Hauchhum
,
L.
,
Pattanayak
,
S.
, and
Krishnan
,
R.
,
2024
, “
Investigation of Biomass Gasification and Fluidization Behaviour for Pilot Double Tapered Bubbling Fluidized Bed Reactor
,”
Environ. Sci. Pollut. Res.
14.
Sudershan
,
B. G.
,
Banapurmath
,
N. R.
,
Kamoji
,
M. A.
,
Rampure
,
P. B.
, and
Khandal
,
S. V.
,
2018
, “
Experimental Investigation of a CRDI Engine in Terms of Performance and Emission Under the Effect of Injection Strategy Using a Moderate Percentage of Plastic Pyrolysis Oil and Its Blends With Diesel and Ethanol
,”
Biofuels
,
12
(
4
), pp.
459
473
.
15.
Bhargavi
,
M.
,
Kumar
,
T. V.
,
Shaik
,
R. A. A.
,
Kanna
,
S. K.
, and
Padmanabhan
,
S.
,
2022
, “
Effective Utilization and Optimization of Waste Plastic Oil With Ethanol Additive in Diesel Engine Using Full Factorial Design
,”
Mater. Today Proc.
,
52
, pp.
930
936
.
16.
Sayin
,
C.
,
2010
, “
Engine Performance and Exhaust Gas Emissions of Methanol and Ethanol—Diesel Blends
,”
Fuel
,
89
(
11
), pp.
3410
3415
.
17.
Zhu
,
L.
,
Cheung
,
C. S.
,
Zhang
,
W. G.
, and
Huang
,
Z.
,
2011
, “
Combustion, Performance and Emission Characteristics of a DI Diesel Engine Fueled With Ethanol–Biodiesel Blends
,”
Fuel
,
90
(
5
), pp.
1743
1750
.
18.
Hulwan
,
D. B.
, and
Joshi
,
S. V.
,
2011
, “
Performance, Emission and Combustion Characteristic of a Multicylinder DI Diesel Engine Running on Diesel–Ethanol–Biodiesel Blends of High Ethanol Content American Standards for Testing Materials
,”
Appl. Energy
,
88
(
12
), pp.
5042
5055
.
19.
Kwanchareon
,
P.
,
Luengnaruemitchai
,
A.
, and
Jai-In
,
S.
,
2007
, “
Solubility of a Diesel–Biodiesel–Ethanol Blend, Its Fuel Properties, and Its Emission Characteristics From Diesel Engine
,”
Fuel
,
86
(
7–8
), pp.
1053
1061
.
20.
Dabi
,
M.
, and
Saha
,
U. K.
,
2022
, “
Performance, Combustion and Emissions Analyses of a Single-Cylinder Stationary Compression Ignition Engine Powered by Mesua Ferrea Linn Oil-Ethanol-Diesel Blend
,”
Clean. Eng. Technol.
,
8
, p.
100458
.
21.
Gürbüz
,
H.
, and
Demirtürk
,
S.
,
2020
, “
Investigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fueled Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122306
.
22.
Zhang
,
Y.
,
Zhao
,
W.
,
Wu
,
H.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2022
, “
Performance, Combustion, and Emission Evaluation of Ethanol-Gasoline Blends Ignited by Diesel in Dual-Fuel Intelligent Charge Compression Ignition (ICCI) Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082104
.
23.
Fiore
,
M.
,
Magi
V.
, and
Viggiano
,
A.
,
2020
, “
Internal Combustion Engines Powered by Syngas: A Review
,”
Appl. Energy
,
276
, p.
115415
.
24.
Hall
,
C.
, and
Kassa
,
M.
,
2021
, “
Advances in Combustion Control for Natural Gas–Diesel Dual Fuel Compression Ignition Engines in Automotive Applications : A Review
,”
Renewable Sustainable Energy Rev.
,
148
, p.
111291
.
25.
Anand
,
T.
, and
Debbarma
,
S.
,
2024
, “
Experimental Analysis of Hydrogen Enrichment in Waste Plastic Oil Blends for Dual-Fuel Common Rail Direct Injection Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
146
(
1
), p.
012302
.
26.
Shen
,
T.
,
Wu
,
Y.
,
Alahmadi
,
T. A.
,
Alharbi
,
S. A.
,
Maroušek
,
J.
,
Xia
,
C.
, and
Praveenkumar
,
T. R.
,
2023
, “
Assessment of Combustion and Acoustic Characteristics of Scenedesmus Dimorphus Blended With Hydrogen Fuel on Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
052302
.
27.
Bui
,
V. G.
,
Bui
,
T. M. T.
,
Hoang
,
A. T.
,
Nižetic
,
S.
,
Nguyen Thi
,
T. X.
, and
Vo
,
A. V.
,
2021
, “
Hydrogen-Enriched Biogas Premixed Charge Combustion and Emissions in Direct Injection and Indirect Injection Diesel Dual Fueled Engines: A Comparative Study
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120907
.
28.
Hosseini
,
S. H.
,
Tsolakis
,
A.
,
Alagumalai
,
A.
,
Mahian
,
O.
,
Lam
,
S. S.
,
Pan
,
J.
,
Peng
,
W.
,
Tabatabaei
,
M.
, and
Aghbashlo
,
M.
,
2023
, “
Use of Hydrogen in Dual-Fuel Diesel Engines
,”
Prog. Energy Combust. Sci.
,
98
, p.
101100
.
29.
Prabhu
,
L.
,
Shenbagaraman
,
S.
,
Anbarasu
,
A.
,
Muniappan
,
A.
,
Suthan
,
R.
, and
Veza
,
I.
,
2023
, “
Prediction of the Engine Performance and Emission Characteristics of Glycine Max Biodiesel Blends With Nanoadditives and Hydrogen
,”
ASME J. Energy Resour. Technol.
,
145
(
11
), p.
112701
.
30.
Praveenkumar
,
T. R.
,
Rath
,
B.
,
Devanesan
,
S.
,
Alsahi
,
M. S.
,
Jhanani
,
G. K.
,
Gemede
,
H. F.
,
Solowski
,
G.
, and
Daniel
,
F.
,
2023
, “
Performance and Emission Characteristics for Karanja Biodiesel Blends Assisted With Green Hydrogen Fuel and Nanoparticles
,”
ASME J. Energy Resour. Technol.
,
145
(
11
), p.
112702
.
31.
Juknelevicius
,
R.
,
Szwaja
,
S.
,
Pyrc
,
M.
, and
Gruca
,
M.
,
2018
, “
Influence of Hydrogen Co-Combustion With Diesel Fuel on Performance, Smoke and Combustion Phases in the Compression Ignition Engine
,”
Int. J. Hydrogen Energy
,
44
(
34
), pp.
19026
19034
.
32.
Yaliwal
,
V. S.
,
Banapurmath
,
N. R.
,
Elahi
,
M.
,
Soudagar
,
M.
,
Afzal
,
A.
, and
Ahmadi
,
P.
,
2021
, “
Effect of Manifold and Port Injection of Hydrogen and Exhaust Gas Recirculation (EGR) in Dairy Scum Biodiesel—Low Energy Content Gas-Fueled CI Engine Operated on Dual Fuel Mode
,”
Int. J. Hydrogen Energy
,
47
(
10
), pp.
6873
6897
.
33.
Singh
,
K.
,
Dwivedi
,
G.
,
Verma
,
T. N.
, and
Shukla
,
A. K
,
2024
, “
Energy, Exergy, Emissions and Sustainability Assessment of Hydrogen Supplemented Diesel Dual Fuel Turbocharged Common Rail Direct Injection Diesel Engine
,”
Int. J. Hydrogen Energy
,
104
, pp.
378
392
.
34.
Ramalingam
,
S.
, and
Subramanian
,
S.
,
2022
, “
Utilization of Pyrolytic Oil and Hydrogen Enriched Syngas From Single Feedstock (Delonix Regia) Through Pyrolysis Process and Its Influence on Performance and Emission Characteristics in CI Engine
,”
Int. J. Hydrogen Energy
,
47
(
87
), pp.
36749
36762
.
35.
Anand
,
T.
, and
Debbarma
,
S.
,
2024
, “
Experimental Investigation of Fuel Injection Timing Effects on a CRDI Diesel Engine Running on Hydrogen-Enriched Waste Plastic Oil
,”
Int. J. Hydrogen Energy
,
57
, pp.
1051
1069
.
36.
Reddy
,
E. R. K.
, and
Pal
,
M. K.
,
2023
, “
Influence of Hydrogen Induction in a CRDI Engine Fuelled With Water Emulsified Waste Plastic Oil Blend
,”
Int. J. Hydrogen Energy
,
49
, pp.
1282
1293
.
37.
Saha
,
D.
,
Roy
,
B.
,
Pattanayak
,
S.
,
Mishra
,
L.
, and
Paban Kundu
,
P.
,
2024
, “
Performance, Emission, Combustion, Exergy, Exergoeconomic and Sustainability Analyses of EGR Incorporated CI Engine Fuelled With Areca Nut Husk Nano-Additive Dosed Plastic Oil–Water-Diesel Emulsion Blend
,”
Therm. Sci. Eng. Prog.
,
47
, p.
102317
.
38.
Kaewbuddee
,
C.
,
Maithomklang
,
S.
,
Aengchuan
,
P.
,
Wiangkham
,
A.
,
Klinkaew
,
N.
,
Ariyarit
A.
, and
Sukjit
,
E.
,
2023
, “
Effects of Alcohol-Blended Waste Plastic Oil on Engine Performance Characteristics and Emissions of a Diesel Engine
,”
Energies
,
16
(
3
), p.
1281
.
39.
Mohapatra
,
S. S.
,
Rath
,
M. K.
,
Singh
,
R. K.
, and
Murugan
,
S.
,
2021
, “
Performance and Emission Analysis of Co-Pyrolytic Oil Obtained From Sugarcane Bagasse and Polystyrene in a CI Engine
,”
Fuel
,
298
, p.
120813
.
40.
Saha
,
D.
, and
Roy
,
B.
,
2022
, “
Effects of Plastic-Grocery-Bag Derived Oil-Water-Diesel Emulsions on Combustion, Performance and Emission Characteristics, and Exergoeconomic Aspects of Compression Ignition Engine
,”
Sustainable Energy Technol. Assess.
,
54
, p.
102877
.
41.
Mariappan
,
M.
,
Panithasan
,
M. S.
, and
Venkadesan
,
G.
,
2021
, “
Pyrolysis Plastic Oil Production and Optimisation Followed by Maximum Possible Replacement of Diesel With Bio-Oil/Methanol Blends in a CRDI Engine
,”
J. Clean. Prod.
,
312
, p.
127687
.
42.
Hasannuddin
,
A. K.
,
Yahya
,
W. J.
,
Sarah
,
S.
,
Ithnin
,
A. M.
,
Syahrullail
,
S.
,
Sidik
,
N. A. C.
,
Abu Kassim
,
K. A.
, et al
,
2018
, “
Nano-Additives Incorporated Water in Diesel Emulsion Fuel: Fuel Properties, Performance and Emission Characteristics Assessment
,”
Energy Convers. Manage.
,
169
, pp.
291
314
.
43.
Subramanian
,
K. A.
,
2011
, “
A Comparison of Water-Diesel Emulsion and Timed Injection of Water Into the Intake Manifold of a Diesel Engine for Simultaneous Control of NO and Smoke Emissions
,”
Energy Convers. Manage.
,
52
(
2
), pp.
849
857
.
44.
Raheman
,
H.
, and
Ghadge
,
S. V.
,
2007
, “
Performance of Compression Ignition Engine With Mahua (Madhuca Indica) Biodiesel
,”
Fuel
,
86
(
16
), pp.
2568
2573
.
45.
Panithasan
,
M. S.
,
Gopalakichenin
,
D.
,
Venkadesan
,
G.
, and
Veeraraagavan
,
S.
,
2019
, “
Impact of Rice Husk Nanoparticle on the Performance and Emission Aspects of a Diesel Engine Running on Blends of Pine Oil-Diesel
,”
Environ. Sci. Pollut. Res.
,
26
(
1
), pp.
282
291
.
46.
Saha
,
D.
, and
Roy
,
B.
,
2023
, “
Influence of Areca Nut Husk Nano-Additive on Combustion, Performance, and Emission Characteristics of Compression Ignition Engine Fuelled With Plastic-Grocery-Bag Derived Oil-Water-Diesel Emulsion
,”
Energy
,
268
, p.
126682
.
47.
Jamrozik
,
A.
,
Grab-Rogaliński
,
K.
, and
Tutak
,
W.
,
2020
, “
Hydrogen Effects on Combustion Stability, Performance and Emission of Diesel Engine
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19936
19947
.
You do not currently have access to this content.