Abstract

Ammonia (NH3) has gained considerable attention as a promising carbon-free hydrogen carrier fuel for internal combustion engines, but its direct use in compression-ignition engines presents challenges, often requiring high-reactivity fuels to ignite the premixed NH3/air mixture and initiate combustion. This study focuses on the ignition process of binary NH3 and dimethyl ether (DME) mixtures, as DME is a carbon-neutral, high-reactivity fuel. A key novelty of this paper is the comparison of the ignition processes of DME and NH3/DME mixtures from a temporal, process-oriented perspective, analyzing chemical kinetics across distinct ignition phases rather than focusing solely on instantaneous reactions at discrete time points. The stage-wise analysis reveals that NH3 has minimal impact on the control mechanism governing the two-stage ignition process of DME. Specifically, DME still largely depends on OH radical proliferation during low-temperature oxidation (LTO), which releases heat as the reaction progresses. As the temperature increases, LTO branching pathways gradually shift to chain-propagation pathways, reducing overall reaction activity. The reactivity and temperature rise rate of the system are then governed by the H2O2 loop mechanism before thermal ignition. However, ammonia significantly extends the ignition delay of DME by competing with OH radicals, which are critical for DME oxidation, thus inhibiting ignition. As the ignition reaction proceeds, ammonia kinetics become more involved. For example, nitrogen-containing species from NH3 oxidation, such as NO, NO2, and NH2, react with CH3OCH2 to form CH3OCHO, reducing the flux through the LTO pathway of DME. While ammonia reaction pathways also produce OH radicals, this occurs at the expense of HO2 and H radicals, leading to H2O2 formation. Overall, these findings demonstrate the substantial impact of ammonia addition on DME ignition, highlighting the need for further research to better understand NH3/DME binary fuel ignition and to optimize the design and operation of NH3/DME dual-fuel engines for improved efficiency and reliability.

References

1.
Cardoso
,
J. S.
,
Silva
,
V.
,
Rocha
,
R. C.
,
Hall
,
M. J.
,
Costa
,
M.
, and
Eusébio
,
D.
,
2021
, “
Ammonia as an Energy Vector: Current and Future Prospects for Low-Carbon Fuel Applications in Internal Combustion Engines
,”
J. Cleaner Prod.
,
296
, p.
126562
.
2.
Awad
,
O. I.
,
Zhou
,
B.
,
Harrath
,
K.
, and
Kadirgama
,
K.
,
2022
, “
Characteristics of NH3/H2 Blend as Carbon-Free Fuels: A Review
,”
Int. J. Hydrogen Energy
,
48
(
96
), pp.
38077
38100
.
3.
Chen
,
J.
,
Fei
,
Y.
, and
Wan
,
Z.
,
2019
, “
The Relationship Between the Development of Global Maritime Fleets and GHG Emission From Shipping
,”
J. Environ. Manage.
,
242
, pp.
31
39
.
4.
Yang
,
R.
,
Liu
,
J.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
Applying Separate Treatment of Fuel-And Air-Borne Nitrogen to Enhance Understanding of In-Cylinder Nitrogen-Based Pollutants Formation and Evolution in Ammonia-Diesel Dual Fuel Engines
,”
Sustain. Energy Technol. Assess.
,
69
, p.
103910
.
5.
Yan
,
Y.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
Computational Analysis of Ammonia-Hydrogen Blends in Homogeneous Charge Compression Ignition Engine Operation
,”
Process Saf. Environ. Prot.
,
190
, pp.
1263
1272
.
6.
Huang
,
Q.
, and
Liu
,
J.
,
2024
, “
Preliminary Assessment of the Potential for Rapid Combustion of Pure Ammonia in Engine Cylinders Using the Multiple Spark Ignition Strategy
,”
Int. J. Hydrogen Energy
,
55
, pp.
375
385
.
7.
Kurien
,
C.
, and
Mittal
,
M.
,
2022
, “
Review on the Production and Utilization of Green Ammonia as an Alternate Fuel in Dual-Fuel Compression Ignition Engines
,”
Energy Convers. Manage.
,
251
, p.
114990
.
8.
Mørch
,
C. S.
,
Bjerre
,
A.
,
Gøttrup
,
M. P.
,
Sorenson
,
S. C.
, and
Schramm
,
J.
,
2011
, “
Ammonia/Hydrogen Mixtures in an SI-Engine: Engine Performance and Analysis of a Proposed Fuel System
,”
Fuel
,
90
(
2
), pp.
854
864
.
9.
Yang
,
R.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
The Methodology of Decoupling Fuel and Thermal Nitrogen Oxides in Multi-Dimensional Computational Fluid Dynamics Combustion Simulation of Ammonia-Hydrogen Spark Ignition Engines
,”
Int. J. Hydrogen Energy
,
55
, pp.
300
318
.
10.
Wang
,
B.
,
Dong
,
S.
,
Jiang
,
Z.
,
Gao
,
W.
,
Wang
,
Z.
,
Li
,
J.
,
Yang
,
C.
,
Wang
,
Z.
, and
Cheng
,
X.
,
2023
, “
Development of a Reduced Chemical Mechanism for Ammonia/n-Heptane Blends
,”
Fuel
,
338
, p.
127358
.
11.
Reiter
,
A. J.
, and
Kong
,
S. C.
,
2011
, “
Combustion and Emissions Characteristics of Compression-Ignition Engine Using Dual Ammonia-Diesel Fuel
,”
Fuel
,
90
(
1
), pp.
87
97
.
12.
Gross
,
C. W.
, and
Kong
,
S. C.
,
2013
, “
Performance Characteristics of a Compression-Ignition Engine Using Direct-Injection Ammonia–DME Mixtures
,”
Fuel
,
103
, pp.
1069
1079
.
13.
Ryu
,
K.
,
Zacharakis-Jutz
,
G. E.
, and
Kong
,
S. C.
,
2014
, “
Performance Characteristics of Compression-Ignition Engine Using High Concentration of Ammonia Mixed With Dimethyl Ether
,”
Appl. Energy
,
113
, pp.
488
499
.
14.
Reiter
,
A. J.
, and
Kong
,
S. C.
,
2008
, “
Demonstration of Compression-Ignition Engine Combustion Using Ammonia in Reducing Greenhouse Gas Emissions
,”
Energy Fuels
,
22
(
5
), pp.
2963
2971
.
15.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
16.
Shiga
,
S.
,
Ehara
,
H.
,
Karasawa
,
T.
, and
Kurabayashi
,
T.
,
1988
, “
Effect of Exhaust Gas Recirculation on Diesel Knock Intensity and Its Mechanism
,”
Combust. Flame
,
72
(
3
), pp.
225
234
.
17.
Sjöberg
,
M.
,
Dec
,
J. E.
, and
Cernansky
,
N. P.
,
2005
, “Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments,” SAE Technical Paper, 2005-01-0113.
18.
Kyrtatos
,
P.
,
Hoyer
,
K.
,
Obrecht
,
P.
, and
Boulouchos
,
K.
,
2014
, “
Apparent Effects of In-Cylinder Pressure Oscillations and Cycle-to-Cycle Variability on Heat Release Rate and Soot Concentration Under Long Ignition Delay Conditions in Diesel Engines
,”
Int. J. Engine Res.
,
15
(
3
), pp.
325
337
.
19.
Shi
,
Z.
,
Wu
,
H.
,
Li
,
H.
,
Zhang
,
L.
,
Li
,
X.
, and
Lee
,
C. F.
,
2021
, “
Effect of Injection Pressure and Fuel Mass on Wall-Impinging Ignition and Combustion Characteristics of Heavy-Duty Diesel Engine at Low Temperatures
,”
Fuel
,
299
, p.
120904
.
20.
Fang
,
L.
,
Lou
,
D.
,
Hu
,
Z.
,
Tan
,
P.
,
Zhang
,
Y.
, and
Yang
,
R.
,
2022
, “
Study on the First-Firing-Cycle Combustion Characteristics of High-Altitude and Low-Temperature Environments During Diesel Engine Cold Start
,”
Fuel
,
322
, p.
124186
.
21.
Zhao
,
W.
,
Yan
,
J.
,
Gao
,
S.
,
Lee
,
T. H.
, and
Li
,
X.
,
2022
, “
The Combustion and Emission Characteristics of a Common-Rail Diesel Engine Fueled With Diesel, Propanol, and Pentanol Blends Under Low Intake Pressures
,”
Fuel
,
307
, p.
121692
.
22.
Li
,
T.
,
Zhou
,
X.
,
Wang
,
N.
,
Wang
,
X.
,
Chen
,
R.
,
Li
,
S.
, and
Yi
P.
,
2022
, “
A Comparison Between Low-and High-Pressure Injection Dual-Fuel Modes of Diesel-Pilot-Ignition Ammonia Combustion Engines
,”
J. Energy Inst.
,
102
, pp.
362
373
.
23.
Zhou
,
X.
,
Li
,
T.
,
Wang
,
N.
,
Wang
,
X.
,
Chen
,
R.
, and
Li
,
S.
,
2023
, “
Pilot Diesel-Ignited Ammonia Dual Fuel Low-Speed Marine Engines: A Comparative Analysis of Ammonia Premixed and High-Pressure Spray Combustion Modes With CFD Simulation
,”
Renewable Sustainable Energy Rev.
,
173
, p.
113108
.
24.
Bro
,
K.
, and
Pedersen
,
P. S.
,
1977
, “Alternative Diesel Engine Fuels: An Experimental Investigation of Methanol, Ethanol, Methane and Ammonia in a DI Diesel Engine With Pilot Injection,” SAE Technical Paper, 770794.
25.
Prince
,
J. C.
, and
Williams
,
F. A.
,
2015
, “
A Short Reaction Mechanism for the Combustion of Dimethyl-Ether
,”
Combust. Flame
,
162
(
10
), pp.
3589
3595
.
26.
Musculus
,
M. P.
,
Miles
,
P. C.
, and
Pickett
,
L. M.
,
2013
, “
Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion
,”
Prog. Energy Combust. Sci.
,
39
(
2–3
), pp.
246
283
.
27.
Feng
,
Y.
,
Zhu
,
J.
,
Mao
,
Y.
,
Raza
,
M.
,
Qian
,
Y.
,
Yu
,
L.
, and
Lu
,
X.
,
2020
, “
Low-Temperature Auto-Ignition Characteristics of NH3/Diesel Binary Fuel: Ignition Delay Time Measurement and Kinetic Analysis
,”
Fuel
,
281
, p.
118761
.
28.
Yu
,
L.
,
Zhou
,
W.
,
Feng
,
Y.
,
Wang
,
W.
,
Zhu
,
J.
,
Qian
,
Y.
, and
Lu
,
X.
,
2020
, “
The Effect of Ammonia Addition on the Low-Temperature Autoignition of n-Heptane: An Experimental and Modeling Study
,”
Combust. Flame
,
217
, pp.
4
11
.
29.
Xu
,
L.
,
Chang
,
Y.
,
Treacy
,
M.
,
Zhou
,
Y.
,
Jia
,
M.
, and
Bai
,
X. S.
,
2023
, “
A Skeletal Chemical Kinetic Mechanism for Ammonia/n-Heptane Combustion
,”
Fuel
,
331
, p.
125830
.
30.
Hamdy
,
M.
,
Nadiri
,
S.
,
Mohamed
,
A.
,
Dong
,
S.
,
Wu
,
Y.
,
Fernandes
,
R.
,
Zhou
,
C.
, et al
,
2023
, “An Updated Comprehensive Chemical Kinetic Mechanism for Ammonia and Its Blends With Hydrogen, Methanol, and n-Heptane,” SAE Technical Paper No. 2023-01-0204.
31.
Semelsberger
,
T. A.
,
Borup
,
R. L.
, and
Greene
,
H. L.
,
2006
, “
Dimethyl Ether (DME) as an Alternative Fuel
,”
J. Power Sources
,
156
(
2
), pp.
497
511
.
32.
Yin
,
G.
,
Li
,
J.
,
Zhou
,
M.
,
Li
,
J.
,
Wang
,
C.
,
Hu
,
E.
, and
Huang
,
Z.
,
2022
, “
Experimental and Kinetic Study on Laminar Flame Speeds of Ammonia/Dimethyl Ether/Air Under High Temperature and Elevated Pressure
,”
Combust. Flame
,
238
, p.
111915
.
33.
Issayev
,
G.
,
Giri
,
B. R.
,
Elbaz
,
A. M.
,
Shrestha
,
K. P.
,
Mauss
,
F.
,
Roberts
,
W. L.
, and
Farooq
,
A.
,
2022
, “
Ignition Delay Time and Laminar Flame Speed Measurements of Ammonia Blended With Dimethyl Ether: A Promising Low Carbon Fuel Blend
,”
Renewable Energy
,
181
, pp.
1353
1370
.
34.
Xiao
,
H.
, and
Li
,
H.
,
2022
, “
Experimental and Kinetic Modeling Study of the Laminar Burning Velocity of NH3/DME/Air Premixed Flames
,”
Combust. Flame
,
245
, p.
112372
.
35.
Dai
,
L.
,
Hashemi
,
H.
,
Glarborg
,
P.
,
Gersen
,
S.
,
Marshall
,
P.
,
Mokhov
,
A.
, and
Levinsky
,
H.
,
2021
, “
Ignition Delay Times of NH3/DME Blends at High Pressure and Low DME Fraction: RCM Experiments and Simulations
,”
Combust. Flame
,
227
, pp.
120
134
.
36.
Meng
,
X.
,
Zhang
,
M.
,
Zhao
,
C.
,
Tian
,
H.
,
Tian
,
J.
,
Long
,
W.
, and
Bi
,
M.
,
2022
, “
Study of Combustion and NO Chemical Reaction Mechanism in Ammonia Blended With DME
,”
Fuel
,
319
, p.
123832
.
37.
Yin
,
G.
,
Xiao
,
B.
,
Zhao
,
H.
,
Zhan
,
H.
,
Hu
,
E.
, and
Huang
,
Z.
,
2023
, “
Jet-Stirred Reactor Measurements and Chemical Kinetic Study of Ammonia With Dimethyl Ether
,”
Fuel
,
341
, p.
127542
.
38.
Pfahl
,
U.
,
Fieweger
,
K.
, and
Adomeit
,
G.
,
1996
, “
Self-Ignition of Diesel-Relevant Hydrocarbon-Air Mixtures Under Engine Conditions
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
781
789
.
39.
Wang
,
Z.
,
Zhang
,
X.
,
Xing
,
L.
,
Zhang
,
L.
,
Herrmann
,
F.
,
Moshammer
,
K.
,
Qi
,
F.
, and
Kohse-Höinghaus
,
K.
,
2015
, “
Experimental and Kinetic Modeling Study of the Low-and Intermediate-Temperature Oxidation of Dimethyl Ether
,”
Combust. Flame
,
162
(
4
), pp.
1113
1125
.
40.
Jiang
,
X.
,
Zhang
,
Q.
,
Liu
,
X.
,
Zhang
,
T.
,
Zhang
,
Y.
,
Huang
,
Z.
, and
Yan
,
Y.
,
2024
, “
A Shock Tube Study of the Ignition Delay Time of DME/Ammonia Mixtures: Effect of Fuel Blending From High Temperatures to the NTC Regime
,”
Fuel
,
367
, p.
131426
.
41.
Ou
,
J.
,
Zhang
,
Z.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
Effect of Ammonia Reaction Kinetics on the Two-Stage Ignition Mechanism of Dimethyl Ether
,”
Fuel Process. Technol.
,
261
, p.
108112
.
42.
Curran
,
H. J.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Dagaut
,
P.
,
Boettner
,
J. C.
, and
Cathonnet
,
M.
,
1998
, “
A Wide Range Modeling Study of Dimethyl Ether Oxidation
,”
Int. J. Chem. Kinet.
,
30
(
3
), pp.
229
241
.
43.
Curran
,
H. J.
,
Fischer
,
S. L.
, and
Dryer
,
F. L.
,
2000
, “
The Reaction Kinetics of Dimethyl Ether. II: Low-Temperature Oxidation in Flow Reactors
,”
Int. J. Chem. Kinet.
,
32
(
12
), pp.
741
759
.
You do not currently have access to this content.