Abstract

Experimental and optimization work is carried out to study the effects of fuel injection pressure, boost pressure, pilot injection timing, pilot injection quantity, and main injection timing as input parameters. A four-cylinder, automotive model direct injection diesel engine, incorporated with a variable geometry turbocharger, was chosen for the experiment. Engine test runs are conducted at a driving condition of 80.3 N m torque and an engine speed of 1750 rpm, respectively, corresponding to highway driving conditions, using 10% of exhaust gases recirculated. The response surface methodology is employed to design experiments and analyze the experimental data to optimize engine parameters, considering the mentioned parameters as input parameters. A multi-objective response approach is adopted to optimize engine-operating parameters to obtain desired performance and engine-out emissions. Confirmatory tests are conducted at design conditions to validate the results predicted by the model. It is observed that for the chosen engine configuration, the optimum performance and emission characteristics could be obtained with 120 kPa boost pressure, 61.1 MPa fuel injection pressure, and 11.5% of total fuel amount as pilot injection and remaining as main injection quantity at 332 deg and 359 deg crank angle, respectively. Overall, fairly better engine performance was observed with the use of selected ranges. It is noted that with the procedures adopted, improved engine performance and a significant reduction in harmful emissions are obtained without using major add-ons. The investigation revealed excellent potential for a diesel engine to be an effective prime mover.

References

1.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
, 2nd ed.,
McGraw-Hill Education
,
New York
.
2.
Borman
,
G. L.
, and
Ragland
,
K. W.
,
1998
,
Combustion Engineering
,
McGraw-Hill
,
New York
.
3.
Hesterberg
,
T. W.
,
Bunn
,
W. B.
, III
,
Chase
,
G. R.
,
Valberg
,
P. A.
,
Slavin
,
T. J.
,
Lapin
,
C. A.
, and
Hart
,
G. A.
,
2006
, “
A Critical Assessment of Studies on the Carcinogenic Potential of Diesel Exhaust
,”
Crit. Rev. Toxicol.
,
36
(
9
), pp.
727
776
.
4.
Lloyd
,
A. C.
, and
Cackette
,
T. A.
,
2001
, “
Diesel Engines: Environmental Impact and Control
,”
J. Air Waste Manage. Assoc.
,
51
(
6
), pp.
809
847
.
5.
Turns
,
S.
,
2012
,
An Introduction to Combustion Concepts and Applications
, 3rd ed.,
McGraw-Hill
,
New York
.
6.
Labecki
,
L.
, and
Ganippa
,
L. C.
,
2012
, “
Effects of Injection Parameters and EGR on Combustion and Emission Characteristics of Rapeseed Oil and Its Blends in Diesel Engines
,”
Fuel
,
98
, pp.
15
28
.
7.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Maurya
,
R. K.
,
Chandra Shukla
,
P.
,
Dhar
,
A.
, and
Srivastava
,
D. K.
,
2018
, “
Combustion Characteristics of a Common Rail Direct Injection Engine Using Different Fuel Injection Strategies
,”
Int. J. Therm. Sci.
,
134
, pp.
475
484
.
8.
Reşitoglu
,
I. A.
,
Altinişik
,
K.
, and
Keskin
,
A.
,
2015
, “
The Pollutant Emissions From Diesel-Engine Vehicles and Exhaust Aftertreatment Systems
,”
Clean Technol. Environ. Policy
,
17
(
1
), pp.
15
27
.
9.
Agarwal
,
A. K.
,
Srivastava
,
D. K.
,
Dhar
,
A.
,
Maurya
,
R. K.
,
Shukla
,
P. C.
, and
Singh
,
A. P.
,
2013
, “
Effect of Fuel Injection Timing and Pressure on Combustion, Emissions and Performance Characteristics of a Single Cylinder Diesel Engine
,”
Fuel
,
111
, pp.
374
383
.
10.
Vinod Babu
,
M.
,
Madhu Murthy
,
K.
, and
Amba Prasad Rao
,
G.
,
2018
, “
Experimental Investigations on the Influence of Higher Injection Pressures and Retarded Injection Timings on a Single Cylinder CRDi Diesel Engine
,”
Int. J. Ambient Energy
,
42
(
4
), pp.
1
14
.
11.
Challen
,
B.
, and
Baranescu
,
R.
,
1999
,
Diesel Engine Reference Book, Society of Automotive Engineer
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
12.
Zhang
,
G.
,
Qiao
,
X.
,
Miao
,
X.
,
Hong
,
J.
, and
Zheng
,
J.
,
2012
, “
Effects of Highly Dispersed Spray Nozzle on Fuel Injection Characteristics and Emissions of Heavy-Duty Diesel Engine
,”
Fuel
,
102
, pp.
666
673
.
13.
Puhan
,
S.
,
Jegan
,
R.
,
Balasubbramanian
,
K.
, and
Nagarajan
,
G.
,
2009
, “
Effect of Injection Pressure on Performance, Emission and Combustion Characteristics of High Linolenic Linseed Oil Methyl Ester in a DI Diesel Engine
,”
Renew. Energy
,
34
(
5
), pp.
1227
1233
.
14.
Wang
,
X.
,
Huang
,
Z.
,
Kuti
,
O. A.
,
Zhang
,
W.
, and
Nishida
,
K.
,
2010
, “
Experimental and Analytical Study on Biodiesel and Diesel Spray Characteristics Under Ultra-High Injection Pressure
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
659
666
.
15.
Ozsezen
,
A. N.
,
Canakci
,
M.
, and
Sayin
,
C.
,
2008
, “
Effects of Biodiesel From Used Frying Palm Oil on the Performance, Injection, and Combustion Characteristics of an Indirect Injection Diesel Engine
,”
Energy Fuels
,
22
(
7
), pp.
1297
1305
.
16.
Celikten
,
I.
,
2003
, “
An Experimental Investigation of the Effect of the Injection Pressure on Engine Performance and Exhaust Emission in Indirect Injection Diesel Engines
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2051
2060
.
17.
Ishida
,
M.
,
Chen
,
Z. L.
,
Luo
,
G. F.
, and
Ueki
,
H.
,
1994
, “
The Effect of Pilot Injection on Combustion in a Turbocharged D. I. Diesel Engine
,”
SAE Technical Paper No. 941692
, pp.
35
44
.
18.
Tanov
,
S.
,
Pachano
,
L.
,
Andersson
,
Ö.
,
Wang
,
Z.
,
Richter
,
M.
,
Pastor
,
J. V.
, and
García
,
A.
,
2018
, “
Influence of Spatial and Temporal Distribution of Turbulent Kinetic Energy on Heat Transfer Coefficient in a Light Duty CI Engine Operating With Partially Premixed Combustion
,”
Appl. Therm. Eng.
,
129
, pp.
31
40
.
19.
Roy
,
M. M.
,
2009
, “
Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032201
.
20.
Nakakita
,
K.
,
Kondoh
,
T.
,
Ohsawa
,
K.
,
Takahashi
,
T.
, and
Watanabe
,
S.
,
1994
, “
Optimization of Pilot Injection Pattern and Its Effect on Diesel Combustion With High-Pressure Injection
,”
JSME Int. J. Ser. B
,
37
(
4
), pp.
966
973
.
21.
Yang
,
B.
,
Wang
,
L.
,
Ning
,
L.
, and
Zeng
,
K.
,
2016
, “
Effects of Pilot Injection Timing on the Combustion Noise and Particle Emissions of a Diesel/Natural Gas Dual-Fuel Engine at Low Load
,”
Appl. Therm. Eng.
,
102
, pp.
822
828
.
22.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Split Fuel Injection and EGR on NOx and PM Emission Reduction in a Low Temperature Combustion (LTC) Mode Diesel Engine
,”
Energy
,
122
, pp.
249
264
.
23.
Zamboni
,
G.
,
Capobianco
,
M.
, and
Pham
,
D.
,
2020
, “
Effects of Rail Pressure Control on Fuel Consumption, Emissions and Combustion Parameters in a Turbocharged Diesel Engine
,”
Cogent Eng.
,
7
(
1
), p.
1724848
.
24.
Sindhu
,
R.
,
Amba Prasad Rao
,
G.
, and
Madhu Murthy
,
K.
,
2018
, “
Effective Reduction of NOx Emissions From Diesel Engine Using Split Injections
,”
Alexandria Eng. J.
,
57
(
3
), pp.
1379
1392
.
25.
Suh
,
H. K.
,
2011
, “
Investigations of Multiple Injection Strategies for the Improvement of Combustion and Exhaust Emissions Characteristics in a Low Compression Ratio (CR) Engine
,”
Appl. Energy
,
88
(
12
), pp.
5013
5019
.
26.
Wei
,
H.
,
Yao
,
C.
,
Pan
,
W.
,
Han
,
G.
,
Dou
,
Z.
,
Wu
,
T.
,
Liu
,
M.
, et al
,
2017
, “
Experimental Investigations of the Effects of Pilot Injection on Combustion and Gaseous Emission Characteristics of Diesel/Methanol Dual Fuel Engine
,”
Fuel
,
188
, pp.
427
441
.
27.
Murillo
,
S.
,
Míguez
,
J. L.
,
Porteiro
,
J.
,
López-González
,
L. M.
,
Granada
,
E.
,
Morán
,
J. C.
, and
Paz
,
C.
,
2008
, “
Exhaust Emissions From Diesel, LPG, and Gasoline Low-Power Engines
,”
Energy Sources Part A
,
30
(
12
), pp.
1065
1073
.
28.
Kreith
,
F.
,
West
,
R. E.
, and
Isler
,
B. E.
,
2002
, “
Efficiency of Advanced Ground Transportation Technologies
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
173
179
.
29.
Chokri
,
B.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032202
.
30.
Vinod Babu
,
M.
,
Madhu Murthy
,
K.
, and
Amba Prasad Rao
,
G.
,
2017
, “
Butanol and Pentanol: The Promising Biofuels for CI Engines—A Review
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
1068
1088
.
31.
Labeckas
,
G.
, and
Slavinskas
,
S.
,
2005
, “
Performance and Exhaust Emissions of Direct-Injection Diesel Engine Operating on Rapeseed Oil and Its Blends With Diesel Fuel
,”
Transport
,
20
(
5
), pp.
186
194
.
32.
Ozawa
,
Y.
,
Soma
,
Y.
,
Shoji
,
H.
,
Iijima
,
A.
, and
Yoshida
,
K.
,
2011
, “
The Application of Coconut-Oil Methyl Ester for Diesel Engine
,”
Int. J. Autom. Eng.
,
2
(
4
), pp.
95
100
.
33.
Cubio
,
G. M.
,
Capareda
,
S. C.
, and
Alagao
,
F. B.
,
2014
, “
Real-Time Analysis of Engine Power, Thermal Efficiency, and Emission Characteristics Using Refined and Transesterified Waste Vegetable Oil
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), pp.
032201
.
34.
Mendoza
,
C.
,
Orozco
,
L. Y.
,
Palacio
,
J.
,
López
,
A. F.
, and
Agudelo
,
J. R.
,
2021
, “
Genotoxic and Mutagenic Activity of Particulate Matter Gathered in a High Emitter Automotive Diesel Engine Operated With Different Palm Oil-Derived Biofuels
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062301
.
35.
Nascimento
,
M. A.
,
Sierra R
,
G. A.
,
Silva Lora
,
E. E.
, and
Rendon
,
M. A.
,
2011
, “
Performance and Emission Experimental Evaluation and Comparison of a Regenerative Gas Microturbine Using Biodiesel From Various Sources as Fuel
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022204
.
36.
Kuraishi
,
T.
,
Ikeda
,
M.
,
Tanaka
,
Y.
, and
Yoneya
,
S.
,
2009
, “
Development of 2.0-Liter L4 DI Diesel Engine to Meet Japanese Emissions Regulations
,”
Rev. Autom. Eng.
,
30
(
4
), pp.
465
472
.
37.
Ajanovic
,
A.
,
Jungmeier
,
G.
,
Beermann
,
M.
, and
Haas
,
R.
,
2013
, “
Driving on Renewables—On the Prospects of Alternative Fuels up to 2050 From an Energetic Point-of-View in European Union Countries
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
031201
.
38.
Feneley
,
A. J.
,
Pesiridis
,
A.
, and
Andwari
,
A. M.
,
2017
, “
Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting—A Review
,”
Renew. Sustain. Energy Rev.
,
71
, pp.
959
975
.
39.
Colban
,
W. F.
, and
Miles
,
P. C.
,
2007
, “
Effect of Intake Pressure on Performance and Emissions in an Automotive Diesel Engine Operating in Low Temperature Combustion Regimes
,”
SAE Technical Paper No. 2007-01-4063
, pp.
1
21
.
40.
Naber
,
J. D.
, and
Siebers
,
D. L.
,
1996
, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,”
SAE Technical Paper No. 960034
, pp.
1
30
.
41.
Yin
,
Y.
,
Liu
,
Z.
,
Zhuge
,
W.
,
Zhao
,
R.
,
Zhao
,
Y.
,
Chen
,
Z.
, and
Mi
,
J.
,
2016
, “
Experimental Study on the Performance of a Turbocompound Diesel Engine With Variable Geometry Turbocharger
,”
Int. J. Fluid Mach. Syst.
,
9
(
4
), pp.
332
337
.
42.
Tanin
,
K. V.
,
Wickman
,
D. D.
,
Montgomery
,
D. T.
,
Das
,
S.
, and
Reitz
,
R. D.
,
1999
, “
The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder D. I. Diesel Engine
,”
SAE Technical Paper No. 1999-01–0840
, pp.
1
22
.
43.
Noehre
,
C.
,
Andersson
,
M.
,
Johansson
,
B.
, and
Hultqvist
,
A.
,
2006
, “
Characterization of Partially Premixed Combustion
,”
SAE Technical Paper No. 2006-01–3412
, pp.
1
17
.
44.
Yilmaz
,
N.
,
Ileri
,
E.
,
Atmanlı
,
A.
,
Deniz Karaoglan
,
A.
,
Okkan
,
U.
, and
Sureyya Kocak
,
M.
,
2016
, “
Predicting the Engine Performance and Exhaust Emissions of a Diesel Engine Fueled With Hazelnut Oil Methyl Ester: The Performance Comparison of Response Surface Methodology and LSSVM
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052206
.
45.
Lee
,
T.
, and
Reitz
,
R. D.
,
2003
, “
Response Surface Method Optimization of a High-Speed Direct-Injection Diesel Engine Equipped With a Common Rail Injection System
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
541
546
.
46.
Jia
,
Z.
, and
Koopmans
,
L.
,
2022
, “
A Hybrid Approach Using Design of Experiment and Artificial Neural Network in a Camless Heavy-Duty Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
122302
.
47.
Xavier
,
T.
,
Cyril
,
R.
,
Simon
,
P.
,
Pascal
,
C.
, and
Georges
,
S.
,
2023
, “
A New Simulation-Based Methodology to Improve Medium-Speed Diesel Engines BSFC/NOx Tradeoff With an Optimized Air Charging System
,”
ASME J. Eng. Gas Turbines Power
,
145
(
1
), p.
011009
.
48.
Mansfield
,
A. B.
,
Chakrapani
,
V.
,
Li
,
Q.
, and
Wooldridge
,
M. S.
,
2022
, “
Genetic Optimization for Engine Combustion System Calibration: A Case Study of Optimization Performance Sensitivity to Algorithm Search Parameters
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082308
.
49.
Ansari
,
N. A.
,
Sharma
,
A.
, and
Singh
,
Y.
,
2018
, “
Performance and Emission Analysis of a Diesel Engine Implementing Polanga Biodiesel and Optimization Using Taguchi Method
,”
Process Saf. Environ. Prot.
,
120
, pp.
146
154
.
50.
Pathak
,
A.
,
Choudhury
,
P. K.
, and
Dutta
,
R. K.
,
2018
, “
Taguchi-Grey Relational Based Multi-objective Optimization of Process Parameters on the Emission and Fuel Consumption Characteristics of a VCR Petrol Engine
,”
Mater. Today Proc.
,
5
(
2
), pp.
4702
4710
.
51.
Tosun
,
E.
,
Aydin
,
K.
, and
Bilgili
,
M.
,
2016
, “
Comparison of Linear Regression and Artificial Neural Network Model of a Diesel Engine Fueled With Biodiesel-Alcohol Mixtures
,”
Alexandria Eng. J.
,
55
(
4
), pp.
3081
3089
.
52.
Alonso
,
J. M.
,
Alvarruiz
,
F.
,
Desantes
,
J. M.
,
Hernández
,
L.
,
Hernández
,
V.
, and
Moltó
,
G.
,
2007
, “
Combining Neural Networks and Genetic Algorithms to Predict and Reduce Diesel Engine Emissions
,”
IEEE Trans. Evol. Comput.
,
11
(
1
), pp.
46
55
.
53.
Desantes
,
J. M.
,
López
,
J. J.
,
García
,
J. M.
, and
Hernández
,
L.
,
2002
, “
Application of Neural Networks for Prediction and Optimization of Exhaust Emissions in a H. D. Diesel Engine
,”
SAE Technical Paper No. 2002-01-1144
, pp.
1
10
.
54.
Kumar
,
S.
, and
Dinesha
,
P.
,
2018
, “
Optimization of Engine Parameters in a Bio Diesel Engine Run With Honge Methyl Ester Using Response Surface Methodology
,”
Measurement
,
125
, pp.
224
231
.
55.
Atmanli
,
A.
,
Yüksel
,
B.
,
Ileri
,
E.
, and
Deniz Karaoglan
,
A.
,
2015
, “
Response Surface Methodology Based Optimization of Diesel-n-Butanol-Cotton Oil Ternary Blend Ratios to Improve Engine Performance and Exhaust Emission Characteristics
,”
Energy Convers. Manage.
,
90
, pp.
383
394
.
56.
Pandian
,
M.
,
Sivapirakasam
,
S. P.
, and
Udayakumar
,
M.
,
2011
, “
Investigation on the Effect of Injection System Parameters on Performance and Emission Characteristics of a Twin Cylinder Compression Ignition Direct Injection Engine Fuelled With Pongamia Biodiesel-Diesel Blend Using Response Surface Methodology
,”
Appl. Energy
,
88
(
8
), pp.
2663
2676
.
57.
Ileri
,
E.
,
Karaoglan
,
A. D.
, and
Atmanli
,
A.
,
2013
, “
Response Surface Methodology Based Prediction of Engine Performance and Exhaust Emissions of a Diesel Engine Fuelled With Canola Oil Methyl Ester
,”
J. Renew. Sustain. Energy
,
5
, p.
033132
.
58.
Yilmaz
,
N.
,
Ileri
,
E.
,
Atmanli
,
A.
,
Karaoglan
,
A. D.
,
Okkan
,
U.
, and
Kocak
,
M. S.
,
2016
, “
Predicting the Engine Performance and Exhaust Emissions of a Diesel Engine Fueled With Hazelnut Oil Methyl Ester: The Performance Comparison of Response Surface Methodology and LSSVM
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052206
.
59.
Hirkude
,
J. B.
, and
Padalkar
,
A. S.
,
2014
, “
Performance Optimization of CI Engine Fuelled With Waste Fried Oil Methyl Ester-Diesel Blend Using Response Surface Methodology
,”
Fuel
,
119
, pp.
266
273
.
60.
Singh
,
Y.
,
Sharma
,
A.
,
Tiwari
,
S.
, and
Singla
,
A.
,
2019
, “
Optimization of Diesel Engine Performance and Emission Parameters Employing Cassia Tora Methyl Esters-Response Surface Methodology Approach
,”
Energy
,
168
, pp.
909
918
.
61.
Zhou
,
X.
,
Song
,
M.
,
Huang
,
H.
,
Yang
,
R.
,
Wang
,
M.
, and
Sheng
,
J.
,
2014
, “
Numerical Study of the Formation of Soot Precursors During Low-Temperature Combustion of n-Butanol–Diesel Blend
,”
Energy Fuels
,
28
(
11
), pp.
7149
7158
.
62.
Li
,
J.
,
Zhong
,
W.
,
Zhang
,
J.
,
Zhao
,
Z.
, and
Hu
,
J.
,
2023
, “
The Combustion and Emission Improvements for Diesel–Biodiesel Hybrid Engines Based on Response Surface Methodology
,”
Front. Energy Res.
,
11
, p.
1201815
.
63.
Hussain Vali
,
R.
,
Hoang
,
A. T.
,
Marouf Wani
,
M.
,
Pali
,
H. S.
,
Balasubramanian
,
D.
,
Arıcı
,
M.
,
Said
,
Z.
, and
Nguyen
,
X. P.
,
2022
, “
Optimization of Variable Compression Ratio Diesel Engine Fueled With Zinc Oxide Nanoparticles and Biodiesel Emulsion Using Response Surface Methodology
,”
Fuel
,
323
, pp.
124290
.
64.
Rastogi
,
P. M.
,
Kumar
,
N.
, and
Sharma
,
A.
,
2023
, “
Use of Response Surface Methodology Approach for Development of Sustainable Jojoba Biodiesel Diesel Blend With CuO Nanoparticles for Four Stroke Diesel Engine
,”
Fuel
,
339
, p.
127367
.
65.
Ali
,
S.
,
De Poures
,
M. V.
,
Damodharan
,
D.
,
Gopal
,
K.
,
Charles Augustin
,
V.
, and
Swaminathan
,
M. R.
,
2022
, “
Prediction of Emissions and Performance of a Diesel Engine Fueled With Waste Cooking Oil and C8 Oxygenate Blends Using Response Surface Methodology
,”
J. Clean. Prod.
,
371
, p.
133323
.
66.
Uslu
,
S.
, and
Celik
,
M.
,
2023
, “
Response Surface Methodology-Based Optimization of the Amount of Cerium Dioxide (CeO2) to Increase the Performance and Reduce Emissions of a Diesel Engine Fuelled by Cerium Dioxide/Diesel Blends
,”
Energy
,
266
, p.
126403
.
You do not currently have access to this content.