Abstract

The stability, combustion, and emission features of stratified oxy-methane (CH4/O2/CO2) flames stabilized over a dual annular counter-rotating swirl (DACRS) burner, developed for gas turbine combustion applications, were investigated experimentally. The experiments were performed at fixed velocity ratio (Vr = Vp/Vs = 3.0) in both the primary and secondary streams at a constant primary stream velocity, Vp of 5 m/s and at fixed primary stream equivalence ratio, φp = 0.9, and over ranges of oxygen fractions (OFp for the primary stream, OFs for the secondary stream) and secondary stream equivalence ratios. Measurements of flame macrostructure, temperature profiles, and exhaust emissions were recorded to characterize the flames and validate future numerical models. The testing findings revealed no flame flashback within the operational ranges of OFp and OFs and up to φs = 1.0. However, the near stoichiometric operation of the primary stream (φp = 0.9) at OFp = 0.38 permitted the main secondary flame to tolerate exceptionally lean conditions (φs = 0.397 at OFs = 0.34 and φs = 0.223 at OFs = 0.39), raising the thresholds for the flame blowout. Increasing OFp from 0.21 to 0.38 significantly reduced φS at blowout from 0.537 to 0.223, corresponding to a decrease in the combustor's global equivalence ratio (φg) at blowout from 0.554 to 0.254 at global oxygen fraction (OFg) from 0.38 to 0.39. Lower OFp values caused earlier flame lift-off, indicating the greater influence of OFp on flame macrostructures.

References

1.
Jung
,
K. S.
,
Bak
,
H. S.
,
Nguyen
,
D. N.
,
Lee
,
B. J.
, and
Yoo
,
C. S.
,
2021
, “
NOx Emission Characteristics of CH4 Versus O2/CO2 Counterflow Non-Premixed Flames at Various Pressures up to 300 atm
,”
Fuel
,
299
, p.
120411
.
2.
Meng
,
X.
,
Rokni
,
E.
,
Zhou
,
W.
,
Qi
,
H.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2020
, “
Emissions From Oxy-Combustion of Raw and Torrefied Biomass
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122307
.
3.
Habib
,
M. A.
,
Hossain
,
S.
,
Abdelhafez
,
A.
,
Said
,
S. A.
, and
Nemitallah
,
M. A.
,
2023
, “
On the Effects of Flow Swirl on Static Stability Limits and Flow/Flame Characteristics of Premixed Oxy-Methane Flames: An Experimental Study
,”
Combust. Sci. Technol.
, pp.
1
19
.
4.
Nemitallah
,
M. A.
,
Hossain
,
S.
,
Abdelhafez
,
A.
,
Habib
,
M. A.
,
2023
, “
Impacts of Flow Swirl on Stability and Flow/Flame Interactions of Premixed Oxy-Methane Swirl Flames
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
102303
.
5.
Nemitallah
,
M. A.
,
Mansir
,
I. B.
,
Haque
,
M. A.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2023
, “
Effects of Adiabatic Flame Temperature on Premixed Combustion Stability and Emission Characteristics of Swirl-Stabilized Oxy-Methane Flames
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022302
.
6.
Nemitallah
,
M. A.
,
Aldawood
,
H.
,
Abdelhafez
,
A.
,
Alquaity
,
A.
,
Jameel
,
A. G. A.
, and
Aliyu
,
M.
,
2022
, “
Flow/Flame and Emissions Fields of Premixed Oxy-Methane Stratified Flames in a Dual Annular Counter-Rotating Swirl Burner
,”
Int. J. Thermofluids
,
15
, p.
100185
.
7.
Ditaranto
,
M.
, and
Oppelt
,
T.
,
2011
, “
Radiative Heat Flux Characteristics of Methane Flames in Oxy-Fuel Atmospheres
,”
Exp. Therm. Fluid. Sci.
,
35
(
7
), pp.
1343
1350
.
8.
Kim
,
H. K.
,
Kim
,
Y.
,
Lee
,
S. M.
, and
Ahn
,
K. Y.
,
2007
, “
Studies on Combustion Characteristics and Flame Length of Turbulent Oxy-Fuel Flames
,”
Energy Fuels
,
21
(
3
), pp.
1459
1467
.
9.
Khalil
,
A. E.
, and
Gupta
,
A. K.
,
2017
, “
Acoustic and Heat Release Signatures for Swirl Assisted Distributed Combustion
,”
Appl. Energy
,
193
, pp.
125
138
.
10.
Li
,
B.
,
Shi
,
B.
,
Zhao
,
X.
,
Ma
,
K.
,
Xie
,
D.
,
Zhao
,
D.
, and
Li
,
J.
,
2018
, “
Oxy-Fuel Combustion of Methane in a Swirl Tubular Flame Burner Under Various Oxygen Contents: Operation Limits and Combustion Instability
,”
Exp. Therm. Fluid. Sci.
,
90
, pp.
115
124
.
11.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2017
, “
Flame Fluctuations in Oxy-CO2-Methane Mixtures in Swirl Assisted Distributed Combustion
,”
Appl. Energy
,
204
, pp.
303
317
.
12.
Haque
,
M. A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Mokheimer
,
E. M. A.
, and
Habib
,
M. A.
,
2022
, “
Analysis of Methane, Propane, and Syngas Oxy-Flames in a Fuel-Flex Gas Turbine Combustor for Carbon Capture
,”
Int. J. Energy Res.
,
46
(
7
), pp.
8657
8675
.
13.
Andersson
,
K.
,
Moenckert
,
P.
,
Maier
,
J.
,
Scheffknecht
,
G.
, and
Johnsson
,
F.
,
2006
, “Combustion and Flame Characteristics of Oxy-Fuel Combustion-Experimental Activities Within the Encap Project.”
14.
Andersson
,
K.
, and
Johnsson
,
F.
,
2007
, “
Flame and Radiation Characteristics of Gas-Fired O2/CO2 Combustion
,”
Fuel
,
86
(
5–6
), pp.
656
668
.
15.
Andersson
,
K.
, and
Johnsson
,
F.
,
2006
, “
Radiative Properties of a 100 kW Oxy-Fuel Flame–Experiments and Modelling of the Chalmers Test Facility
,”
Proceedings of the Clearwater Conference
,
Florida
,
2006
.
16.
Hawkes
,
E. R.
, and
Chen
,
J. H.
,
2004
, “
Direct Numerical Simulation of Hydrogen-Enriched Lean Premixed Methane–Air Flames
,”
Combust. Flame
,
138
(
3
), pp.
242
258
.
17.
Al-Abbas
,
A. H.
,
Naser
,
J.
, and
Dodds
,
D.
,
2011
, “
CFD Modelling of Air-Fired and Oxy-Fuel Combustion of Lignite in a 100 KW Furnace
,”
Fuel
,
90
(
5
), pp.
1778
1795
.
18.
Habib
,
M. A.
,
Mokheimer
,
E. M. A.
,
Sanusi
,
S. Y.
, and
Nemitallah
,
M. A.
,
2014
, “
Numerical Investigations of Combustion and Emissions of Syngas as Compared to Methane in a 200 MW Package Boiler
,”
Energy Convers. Manage.
,
83
, pp.
296
305
.
19.
Mokheimer
,
E. M.
,
Sanusi
,
Y. S.
, and
Habib
,
M. A.
,
2016
, “
Numerical Study of Hydrogen-Enriched Methane–air Combustion Under Ultra-Lean Conditions
,”
Int. J. Energy Res.
,
40
(
6
), pp.
743
762
.
20.
Araoye
,
A. A.
,
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Ben-Mansour
,
R.
,
2021
, “
Experimental and Numerical Investigation of Stability and Emissions of Hydrogen-Assisted Oxy-Methane Flames in a Multi-Hole Model Gas-Turbine Burner
,”
Int. J. Hydrogen Energy
,
46
(
38
), pp.
20093
20106
.
21.
Pignatelli
,
F.
,
Kim
,
H.
,
Subash
,
A. A.
,
Liu
,
X.
,
Szasz
,
R. Z.
,
Bai
,
X. S.
,
Brackmann
,
C.
,
Aldén
,
M.
, and
Lörstad
,
D.
,
2022
, “
Pilot Impact on Turbulent Premixed Methane/Air and Hydrogen-Enriched Methane/Air Flames in a Laboratory-Scale Gas Turbine Model Combustor
,”
Int. J. Hydrogen Energy
,
47
(
60
), pp.
25404
25417
.
22.
Schefer
,
R. W.
,
Wicksall
,
D.
, and
Agrawal
,
A. K.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.
23.
Wicksall
,
D. M.
,
Agrawal
,
A. K.
,
Schefer
,
R. W.
, and
Keller
,
J. O.
,
2003
, “
Fuel Composition Effects on the Velocity Field in a Lean Premixed Swirl-Stabilized Combustor
,”
Turbo Expo: Power for Land, Sea, and Air
.
24.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.
25.
Nemitallah
,
M. A.
,
Haque
,
M. A.
,
Hussain
,
M.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2022
, “
Stratified and Hydrogen Combustion Techniques for Higher Turndown and Lower Emissions in Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
020801
.
26.
Lefebvre
,
A. H.
,
1995
, “
The Role of Fuel Preparation in Low-Emission Combustion
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
617
654
.
27.
Correa
,
S. M.
,
1998
, “
Power Generation and Aeropropulsion Gas Turbines: From Combustion Science to Combustion Technology
,”
Symp. Combust. Proc.
,
27
(
2
), pp.
1793
1807
.
28.
Cheng
,
R. K.
,
1995
, “
Velocity and Scalar Characteristics of Premixed Turbulent Flames Stabilized by Weak Swirl
,”
Combust. Flame
,
101
(
1–2
), pp.
1
14
.
29.
Xiao
,
Y.
,
Cao
,
Z.
, and
Wang
,
C.
,
2018
, “
Flame Stability Limits of Premixed Low-Swirl Combustion
,”
Adv. Mech. Eng.
,
10
(
9
), p.
1687814018790878
.
30.
Cheng
,
R. K.
,
Littlejohn
,
D.
,
Strakey
,
P. A.
, and
Sidwell
,
T.
,
2009
, “
Laboratory Investigations of a Low-Swirl Injector With H2 and CH4 at Gas Turbine Conditions
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3001
3009
.
31.
Beerer
,
D. J.
,
2013
,
Combustion Characteristics and Performance of Low-Swirl Injectors With Natural Gas and Alternative Fuels at Elevated Pressures and Temperatures
,
University of California
,
Irvine, CA
.
32.
Periagaram
,
K. B.
,
2012
, “
Determination of Flame Characteristics in a Low Swirl Burner at Gas Turbine Conditions Through Reaction Zone Imaging
,”
Doctoral dissertation
,
Georgia Institute of Technology
,
Atalnta, GA
.
33.
Bell
,
J. B.
,
Cheng
,
R. K.
,
Day
,
M. S.
,
Beckner
,
V. E.
, and
Lijewski
,
M. J.
,
2008
, “
Interaction of Turblence and Chemistry in a Low-Swirl Burner
,”
Journal of Physics: Conference Series
,
IOP Publishing
.
34.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
, pp.
147
173
.
35.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Tunbridge Wells
,
UK
.
36.
Escudier
,
M.
, and
Keller
,
J.
,
1985
, “
Recirculation in Swirling Flow – A Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
(
1
), pp.
111
116
.
37.
Albrecht
,
P.
,
Bade
,
S.
,
Paschereit
,
C.
, and
Gutmark
,
E.
,
2008
, “
Avoidance Strategy for NOx Emissions and Flame Instabilities in a Swirl-Stabilized Combustor
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
.
38.
Subash
,
A. A.
,
Collin
,
R.
,
Aldén
,
M.
,
Kundu
,
A.
, and
Klingmann
,
J.
,
2017
, “
Investigation of Hydrogen Enriched Methane Flame in a Dry Low Emission Industrial Prototype Burner at Atmospheric Pressure Conditions
,”
Turbo Expo: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
.
39.
Nemitallah
,
M. A.
,
Aljehani
,
S. K.
, and
Haque
,
M. A.
,
2023
, “
Effects of Fuel-Hydrogen Levels on Combustion, Operability, and Emission Parameters of CH4/H2/O2/CO2 Stratified Flames in a Dual-Swirl Gas Turbine Burner
,”
Eng. Appl. Comput. Fluid Mech.
,
17
(
1
), p.
2229406
.
40.
Smith
,
T. R.
,
Moehlis
,
J.
, and
Holmes
,
P.
,
2005
, “
Low-Dimensional Modelling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial
,”
Nonlinear Dyn.
,
41
, pp.
275
307
.
41.
Davis
,
D. W.
,
Therkelsen
,
P. L.
,
Littlejohn
,
D.
, and
Cheng
,
R. K.
,
2013
, “
Effects of Hydrogen on the Thermo-Acoustics Coupling Mechanisms of Low-Swirl Injector Flames in a Model Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3135
3143
.
42.
Emara
,
A.
,
Lacarelle
,
A.
, and
Paschereit
,
C.
,
2009
, “
Pilot Flame Impact on Flow Fields and Combustion Performances in Swirl Inducing Burner
,”
45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
.
43.
Nemitallah
,
M. A.
,
Elzayed
,
M. S.
,
Alshadidi
,
A.
,
Abualkhair
,
M.
,
Abdelhafez
,
A.
,
Alzahrani
,
F. M.
, and
Abdul Jameel
,
A. G.
,
2023
, “
Stratified Flames in Dual Annular Counter-Rotating Swirl Burner for Wider Operability Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012305
.
44.
Beér
,
J. M.
, and
Chigier
,
N. A.
,
1972
, Combustion Aerodynamics.
45.
Abdelhafez
,
A.
,
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2018
, “
Stability Map and Shape of Premixed CH4/O2/CO2 Flames in a Model Gas-Turbine Combustor
,”
Appl. Energy
,
215
, pp.
63
74
.
46.
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Rashwan
,
S. S.
, and
Habib
,
M. A.
,
2018
, “
Adiabatic Flame Temperature for Controlling the Macrostructures and Stabilization Modes of Premixed Methane Flames in a Model Gas-Turbine Combustor
,”
Energy Fuels
,
32
(
7
), pp.
7868
7877
.
47.
El-Adawy
,
M.
,
Hamdy
,
M.
,
Abdelhafez
,
A.
,
Abdelhalim
,
A.
, and
Nemitallah
,
M. A.
,
2024
, “
Stability and Combustion Characteristics of Dual Annular Counter-Rotating Swirl Oxy-Methane Flames: Effects of Equivalence and Velocity Ratios
,”
Case Stud. Therm. Eng.
,
61
, p.
104927
.
You do not currently have access to this content.