Abstract

Today, energy transfer enhancement techniques have received much attention for design and manufacturing more efficient systems in various industries such as automotive, computers, electronics, and so forth. One way to achieve high-efficiency cooling systems is to use impingement jet cooling. In the present study, a numerical study has been conducted on nanofluid impingement jet in the vertical position to investigate the fluid flow characteristics and thermal energy transfer features. The working fluid in this study is a nanofluid with water–ethylene glycol mixture as base fluid and nanoparticles of boehmite alumina. The flow is considered to be laminar, steady-state, two-dimensional, symmetrically axial, for which the finite volume method is used to solve the equations. The effect of the Reynolds number variations, the volume fraction of nanoparticle, and different nanoparticle shapes (including spherical, plate, blade, cylindrical, and brick shapes) on thermophysical features of the flow are studied. The results reveal that the increasing Reynolds number and the increasing volume fraction of nanoparticles improves the thermal energy transfer rate. The highest Nusselt number leads to a maximum of energy transfer related to nanofluids with platelet and cylindrical nanoparticles, while the lowest thermal energy transfer rate is related to nanofluids containing spherical nanoparticles. Moreover, it is illustrated that nanofluids with platelets nanoparticles, because of their higher effective viscosity compares to other nanofluids, experience the highest pressure drop and those of with spherical nanoparticles show the lowest pressure drop.

References

References
1.
Sodagar-Abardeh
,
J.
,
Ebrahimi-Moghadam
,
A.
,
Farzaneh-Gord
,
M.
, and
Norouzi
,
A.
,
2020
, “
Optimizing Chevron Plate Heat Exchangers Based on the Second law of Thermodynamics and Genetic Algorithm
,”
J. Therm. Anal. Calorim.
,
139
(
6
), pp.
3563
3576
. 10.1007/s10973-019-08742-3
2.
Chang
,
S. W.
,
Chiang
,
P.-A.
, and
Cai
,
W. L.
, “
Thermal Performance of Impinging jet-row Onto Trapezoidal Channel With Different Effusion and Discharge Conditions
,”
Int. J. Therm. Sci.
,
159
, p.
106590
. 10.1016/j.ijthermalsci.2020.106590
3.
Nayak
,
S. K.
,
Mishra
,
P. C.
, and
Parashar
,
S.
,
2016
, “
Enhancement of Heat Transfer by Water–Al2O3 and Water–TiO2 Nanofluids Jet Impingement in Cooling Hot Steel Surface
,”
J. Exp. Nanosci.
,
11
(
16
), pp.
1253
1273
. 10.1080/17458080.2016.1209789
4.
Naphon
,
P.
,
Nakharintr
,
L.
, and
Wiriyasart
,
S.
,
2018
, “
Continuous Nanofluids jet Impingement Heat Transfer and Flow in a Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
126
, pp.
924
932
. 10.1016/j.ijheatmasstransfer.2018.05.101
5.
Ekiciler
,
R.
,
Çetinkaya
,
M. S. A.
, and
Arslan
,
K.
,
2020
, “
Effect of Shape of Nanoparticle on Heat Transfer and Entropy Generation of Nanofluid-Jet Impingement Cooling
,”
Int. J. Green Energy
,
17
(
10
), pp.
555
567
. 10.1080/15435075.2020.1739692
6.
Sorour
,
M. M.
,
El-Maghlany
,
W. M.
,
Alnakeeb
,
M. A.
, and
Abbass
,
A. M.
,
2019
, “
Experimental Study of Free Single Jet Impingement Utilizing High Concentration SiO2 Nanoparticles Water Base Nanofluid
,”
Appl. Therm. Eng.
,
160
, pp.
114019
. 10.1016/j.applthermaleng.2019.114019
7.
Di Lorenzo
,
G.
,
Manca
,
O.
,
Nardini
,
S.
, and
Ricci
,
D.
,
2012
, “
Numerical Study of Laminar Confined Impinging Slot Jets With Nanofluids
,”
Adv. Mech. Eng.
,
4
, p.
248795
. 10.1155/2012/248795
8.
Huang
,
J.-B.
, and
Jang
,
J.-Y.
,
2013
, “
Numerical Study of a Confined Axisymmetric Jet Impingement Heat Transfer With Nanofluids
,”
Engineering
,
5
(
1
), pp.
60
69
.
9.
Senkal
,
C.
, and
Torii
,
S.
,
2015
, “
Thermal Fluid Flow Transport Phenomena in Nanofluid Jet Array Impingement
,”
J. Flow Visualization Image Process.
,
22
(
1–3
), pp.
59
79
. 10.1615/jflowvisimageproc.2015015238
10.
Siavashi
,
M.
,
Rasam
,
H.
, and
Izadi
,
A.
,
2019
, “
Similarity Solution of Air and Nanofluid Impingement Cooling of a Cylindrical Porous Heat Sink
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
1399
1415
. 10.1007/s10973-018-7540-0
11.
Glaspell
,
A. W.
,
Rouse
,
V. J.
,
Friedrich
,
B. K.
, and
Choo
,
K.
,
2019
, “
Heat Transfer and Hydrodynamics of Air Assisted Free Water Jet Impingement at Low Nozzle-to-Surface Distances
,”
Int. J. Heat Mass Transfer
,
132
, pp.
138
142
. 10.1016/j.ijheatmasstransfer.2018.11.173
12.
Kuraan
,
A. M.
,
Moldovan
,
S. I.
, and
Choo
,
K.
,
2017
, “
Heat Transfer and Hydrodynamics of Free Water Jet Impingement at Low Nozzle-to-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2211
2216
. 10.1016/j.ijheatmasstransfer.2017.01.084
13.
Choo
,
K.
,
Friedrich
,
B. K.
,
Glaspell
,
A. W.
, and
Schilling
,
K. A.
,
2016
, “
The Influence of Nozzle-to-Plate Spacing on Heat Transfer and Fluid Flow of Submerged jet Impingement
,”
Int. J. Heat Mass Transfer
,
97
, pp.
66
69
. 10.1016/j.ijheatmasstransfer.2016.01.060
14.
Kim
,
S. H.
,
Ahn
,
K. H.
,
Park
,
J. S.
,
Jung
,
E. Y.
,
Hwang
,
K.-Y.
, and
Cho
,
H. H.
,
2017
, “
Local Heat and Mass Transfer Measurements for Multi-Layered Impingement/Effusion Cooling: Effects of Pin Spacing on the Impingement and Effusion Plate
,”
Int. J. Heat Mass Transfer
,
105
, pp.
712
722
. 10.1016/j.ijheatmasstransfer.2016.10.007
15.
Izadi
,
A.
,
Siavashi
,
M.
, and
Xiong
,
Q.
,
2019
, “
Impingement Jet Hydrogen, Air and CuH2O Nanofluid Cooling of a Hot Surface Covered by Porous Media With Non-Uniform Input Jet Velocity
,”
Int. J. Hydrogen Energy
,
44
(
30
), pp.
15933
15948
. 10.1016/j.ijhydene.2018.12.176
16.
Chen
,
L.
,
Brakmann
,
R. G. A.
,
Weigand
,
B.
,
Crawford
,
M.
, and
Poser
,
R.
,
2019
, “
Detailed Heat Transfer Investigation of an Impingement jet Array With Large Jet-to-Jet Distance
,”
Int. J. Therm. Sci.
,
146
, p.
106058
. 10.1016/j.ijthermalsci.2019.106058
17.
Nguyen
,
C. T.
,
Galanis
,
N.
,
Polidori
,
G.
,
Fohanno
,
S.
,
Popa
,
C. V.
, and
Le Bechec
,
A.
,
2009
, “
An Experimental Study of a Confined and Submerged Impinging Jet Heat Transfer Using Al2O3-Water Nanofluid
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
401
411
. 10.1016/j.ijthermalsci.2008.10.007
18.
Li
,
Q.
,
Xuan
,
Y.
, and
Yu
,
F.
,
2012
, “
Experimental Investigation of Submerged Single Jet Impingement Using Cu–Water Nanofluid
,”
Appl. Therm. Eng.
,
36
, pp.
426
433
. 10.1016/j.applthermaleng.2011.10.059
19.
Jaberi
,
B.
,
Yousefi
,
T.
,
Farahbakhsh
,
B.
, and
Saghir
,
M. Z.
,
2013
, “
Experimental Investigation on Heat Transfer Enhancement Due to Al2O3–Water Nanofluid Using Impingement of Round Jet on Circular Disk
,”
Int. J. Therm. Sci.
,
74
, pp.
199
207
. 10.1016/j.ijthermalsci.2013.06.013
20.
Yousefi
,
T.
,
Shojaeizadeh
,
E.
,
Mirbagheri
,
H. R.
,
Farahbaksh
,
B.
, and
Saghir
,
M. Z.
,
2013
, “
An Experimental Investigation on the Impingement of a Planar Jet of Al2O3–Water Nanofluid on a V-Shaped Plate
,”
Exp. Therm. Fluid. Sci.
,
50
, pp.
114
126
. 10.1016/j.expthermflusci.2013.05.011
21.
Sodagar-Abardeh
,
J.
,
Arabkoohsar
,
A.
, and
Farzaneh-Gord
,
M.
,
2020
, “
Numerical Study of Magnetic Field Influence on Three-Dimensional Flow Regime and Combined-Convection Heat Exchange Within Concentric and Eccentric Rotating Cylinders
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112115
. 10.1115/1.4048227
22.
Amano
,
R. S.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
. 10.1115/1.4047600
23.
Ben-Mansour
,
R.
,
Hamdy
,
M.
,
Sanusi
,
Y.
,
Araoye
,
A.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2020
, “
Numerical Investigation of Oxygen Permeation Through a Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ Ion Transport Membrane With Impingement Flow
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062101
. 10.1115/1.4045550
24.
Ahmed
,
N.
,
Khan
,
U.
, and
Mohyud-Din
,
S. T.
,
2018
, “
Influence of Shape Factor on Flow of Magneto-Nanofluid Squeezed Between Parallel Disks
,”
Alexandria Eng. J.
,
57
(
3
), pp.
1893
1903
. 10.1016/j.aej.2017.03.031
25.
Reddy
,
P. S.
, and
Chamkha
,
A. J.
,
2016
, “
Influence of Size, Shape, Type of Nanoparticles, Type and Temperature of the Base Fluid on Natural Convection MHD of Nanofluids
,”
Alexandria Eng. J.
,
55
(
1
), pp.
331
341
. 10.1016/j.aej.2016.01.027
26.
Elias
,
M.
,
Shahrul
,
I. M.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2014
, “
Effect of Different Nanoparticle Shapes on Shell and Tube Heat Exchanger Using Different Baffle Angles and Operated With Nanofluid
,”
Int. J. Heat Mass Transfer
,
70
, pp.
289
297
. 10.1016/j.ijheatmasstransfer.2013.11.018
27.
Jeong
,
J.
,
Li
,
C.
,
Kwon
,
Y.
,
Lee
,
J.
,
Kim
,
S. H.
, and
Yun
,
R.
,
2013
, “
Particle Shape Effect on the Viscosity and Thermal Conductivity of ZnO Nanofluids
,”
Int. J. Refrig.
,
36
(
8
), pp.
2233
2241
. 10.1016/j.ijrefrig.2013.07.024
28.
Zeeshan
,
A.
,
Hassan
,
M.
,
Ellahi
,
R.
, and
Nawaz
,
M.
,
2017
, “
Shape Effect of Nanosize Particles in Unsteady Mixed Convection Flow of Nanofluid Over Disk With Entropy Generation
,”
Proc. Inst. Mech. Eng., Part E
,
231
(
4
), pp.
871
879
. 10.1177/0954408916646139
29.
Sobamowo
,
G.
,
2019
, “
Free Convection Flow and Heat Transfer of Nanofluids of Different Shapes of Nano-Sized Particles Over a Vertical Plate at Low and High Prandtl Numbers
,”
J. Appl. Comput. Mech.
,
5
(
1
), pp.
13
39
.
30.
Salimi
,
M. R.
,
Taeibi-Rahni
,
M.
, and
Rostamzadeh
,
H.
,
2020
, “
Heat Transfer and Entropy Generation Analysis in a Three-Dimensional Impinging Jet Porous Heat Sink Under Local Thermal Non-Equilibrium Condition
,”
Int. J. Therm. Sci.
,
153
, p.
106348
. 10.1016/j.ijthermalsci.2020.106348
31.
Kannaiyan
,
K.
,
Anoop
,
K.
, and
Sadr
,
R.
,
2017
, “
Effect of Nanoparticles on the Fuel Properties and Spray Performance of Aviation Turbine Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032201
. 10.1115/1.4034858
32.
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Critical Review of Stabilized Nanoparticle Transport in Porous Media
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070801
. 10.1115/1.4041929
You do not currently have access to this content.