Abstract

In the present work, the transport equations for mass, momentum, energy, and chemical species as given by the Euler–Euler formulation for multiphase flows are used together with the second law of thermodynamics to derive the entropy and exergy transport equations, suitable to the study of gas-particle reactive flows, such as those observed during pyrolysis, gasification, and combustion of biomass particles. The terms of the derived equations are discussed, and the exergy destruction contributions are identified. Subsequently, a kinetic model is implemented in a computational fluid dynamics (CFD) open source code for the sugarcane bagasse gasification. Then, the derived exergy destruction terms are implemented numerically through user-defined Fortran routines. Next, the second law analysis of the gasification process of sugarcane bagasse in bubbling fluidized beds is carried out. Detailed results are obtained for the local destructions of exergy along the reactor. This information is important to help improve environmental and sustainable practices and should be of interest to both designers and operators of fluidized bed equipment.

References

References
1.
Dincer
,
I.
, and
Rosen
,
M.
,
2013
,
Exergy: Energy, Environment and Sustainable Development
, 2nd ed.,
Elsevier
,
Amsterdam
.
2.
Demirel
,
Y.
,
2014
,
Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems
, 3rd ed.,
Elsevier
,
Amsterdam
.
3.
Bejan
,
A.
,
2016
,
Advanced Engineering Thermodynamics
, 4th ed.,
John Willey & Sons
,
New York
.
4.
Ptasinski
,
K.
,
2009
, “Exergetic Evaluation of Thermochemical Biomass Conversion Processes,”
Handbook of Exergy, Hydrogen Energy and Hydropower Research
,
G.
Pélissier
,
A.
Calvet
, eds.,
Nova Science Publishers Inc.
,
Hershey, PA
, pp.
195
223
, Chap. 6.
5.
Prins
,
M.
,
Ptasinski
,
K.
, and
Janssen
,
F.
,
2003
, “
Thermodynamics of Gas-Char Reactions: First and Second Law Analysis
,”
Chem. Eng. Sci.
,
58
(
3–6
), pp.
1003
1011
. 10.1016/S0009-2509(02)00641-3
6.
Ptasinski
,
K.
,
Prins
,
M.
, and
Pierik
,
A.
,
2007
, “
Exergetic Evaluation of Biomass Gasification
,”
Energy
,
32
(
4
), pp.
568
574
. 10.1016/j.energy.2006.06.024
7.
Prins
,
M.
,
Ptasinski
,
K.
, and
Janssen
,
F.
,
2007
, “
From Coal to Biomass Gasification: Comparison of Thermodynamics Efficiency
,”
Energy
,
32
(
7
), pp.
1248
1259
. 10.1016/j.energy.2006.07.017
8.
Pellegrini
,
L.
, and
de Oliveira
,
S.
, Jr.,
2007
, “
Exergy Analysis of Hydrogen Production From Biomass Gasification
,”
Energy
,
32
(
4
), pp.
314
327
. 10.1016/j.energy.2006.07.028
9.
Abuadala
,
A.
,
Dincer
,
I.
, and
Naterer
,
G.
,
2010
, “
Exergy Analysis of Hydrogen Production From Biomass Gasification
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
4981
4990
. 10.1016/j.ijhydene.2009.08.025
10.
Boateng
,
A.
,
Mullen
,
C.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Res. Technol.
,
134
(
4
), p.
042001
. 10.1115/1.4007659
11.
Sreejith
,
C.
,
Muraleedharan
,
C.
, and
Arun
,
P.
,
2013
, “
Energy and Exergy Analysis of Steam Gasification of Biomass Materials: Comparative Study
,”
Int. J. Ambient Energy
,
34
(
1
), pp.
35
52
. 10.1080/01430750.2012.711085
12.
Assari
,
M.
,
Tabrizi
,
H.
, and
Najafpour
,
E.
,
2013
, “
Energy and Exergy Analysis of Fluidized Bed Dryer Based on Two-Fluid Modeling
,”
Int. J. Therm. Sci.
,
64
, pp.
213
219
. 10.1016/j.ijthermalsci.2012.08.020
13.
Peters
,
J.
,
Petrakopoulou
,
F.
, and
Dufour
,
J.
,
2014
, “
Exergetic Analysis of a Fast Pyrolysis Process for Bio-Oil Production
,”
Fuel. Process. Technol.
,
119
, pp.
245
255
. 10.1016/j.fuproc.2013.11.007
14.
Wu
,
H.
,
Li
,
S.
, and
Gao
,
L.
,
2017
, “
Exergy Destruction Mechanism of Coal Gasification by Combining the Kinetic Method and the Energy Utilization Diagram
,”
ASME J. Energy Res. Technol.
,
139
(
6
), p.
062201
. 10.1115/1.4036957
15.
Lior
,
N.
,
Sarmiento-Darkin
,
W.
, and
Al-Sharqawi
,
H. S.
,
2006
, “
The Exergy Fields in Transport Processes: Their Calculation and Use
,”
Energy
,
31
(
5
), pp.
553
578
. 10.1016/j.energy.2005.05.009
16.
Singh
,
R.
,
Brink
,
A.
, and
Hupa
,
M.
,
2013
, “
CFD Modeling to Study Fluidized Bed Combustion and Gasification
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
585
614
. 10.1016/j.applthermaleng.2012.12.017
17.
Syamlal
,
M.
, and
Pannala
,
S.
,
2011
, “Multiphase Continuum Formulation for Gas–Solids Reacting Flows,”
Computational Gas–Solids Flows and Reacting Systems: Theory, Methods and Practice
,
M.
Syamlal
,
S.
Pannala
, and
T. J.
O’Brien
, eds.,
Engineering Science Reference
,
Hershey, PA
, pp.
1
65
, Chap. 1.
18.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic Press, Inc.
,
San Diego, CA
.
19.
Verissimo
,
G.
,
2018
, “
Computational Simulation and Exergetic Analysis of Sugarcane Bagasse Gasification in Bubbling Fluidized Beds
,”
D.Sc. thesis
,
Federal University of Rio de Janeiro/COPPE
,
Rio de Janeiro (in Portuguese)
.
20.
Syamlal
,
M.
,
Rogers
,
W.
, and
O’Brien
,
T.
,
1993
, “
MFIX Documentation: Theory Guide
,”
U.S. Department of Energy
,
Morgantown, WV
.
Technical Note DOE/METC-94/1004
.
21.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2006
,
Transport Phenomena
, 2nd ed.,
Jonh Wiley & Sons
,
New York
.
22.
Chang
,
J.
,
Yang
,
S.
, and
Zhang
,
K.
,
2011
, “
A Particle-to-Particle Heat Transfer Model for Dense Gas-Solid Fluidized Bed of Binary Mixture
,”
Chem. Eng. Res. Des.
,
89
(
7
), pp.
894
903
. 10.1016/j.cherd.2010.08.004
23.
Chang
,
J.
,
Wang
,
G.
,
Gao
,
J.
,
Zhang
,
K.
,
Chen
,
H.
, and
Yang
,
Y.
,
2012
, “
CFD Modeling of Particle-Particle Heat Transfer in Dense Gas-Solid Fluidized Beds of Binary Mixture
,”
Powder Technol.
,
217
, pp.
50
60
. 10.1016/j.powtec.2011.10.008
24.
Mellin
,
P.
,
Kantarelis
,
E.
, and
Yang
,
W.
,
2014
, “
Computational Fluid Dynamics Modeling of Biomass Fast Pyrolysis in a Fluidized Bed Reactor, Using a Comprehensive Chemistry Scheme
,”
Fuel
,
117
(
Part A
), pp.
704
715
. 10.1016/j.fuel.2013.09.009
25.
Bilicki
,
Z.
,
Giot
,
M.
, and
Kwidzinski
,
R.
,
2002
, “
Fundamentals of Two-Phase Flow by the Method of Irreversible Thermodynamics
,”
Int. J. Multiphase Flow
,
28
(
12
), pp.
1983
2005
. 10.1016/S0301-9322(02)00107-6
26.
Safari
,
M.
,
Sheikhi
,
M.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2010
, “
Entropy Transport Equation in Large Eddy Simulation for Exergy Analysis of Turbulent Combustion Systems
,”
Entropy
,
12
(
3
), pp.
434
444
. 10.3390/e12030434
27.
Teng
,
H.
,
Kinoshita
,
C.
,
Masutani
,
S.
, and
Zhou
,
J.
,
1998
, “
Entropy Generation in Multicomponent Reacting Flows
,”
Trans. ASME J. Energy Resour. Technol.
,
120
(
3
), pp.
226
232
. 10.1115/1.2795040
28.
Kondepudi
,
D.
, and
Prigogine
,
I.
,
2015
,
Modern Thermodynamics: From Heat Engines to Dissipative Structures
, 2nd ed.,
John Wiley & Sons
,
West Sussex
.
29.
Dunbar
,
W.
,
Lior
,
N.
, and
Gaggioli
,
R.
,
1992
, “
The Component Equations of Energy and Exergy
,”
Trans. ASME J. Energy Resour. Technol.
,
114
(
1
), pp.
75
83
. 10.1115/1.2905924
30.
Wepfer
,
W.
, and
Gaggioli
,
R.
,
1980
, “Reference Datums for Available Energy,”
Thermodynamics: Second Law Analysis
, Vol.
122
,
R. A.
Gaggioli
, ed.,
ACS Symposium Series, American Chemical Society
,
Washington, DC
, pp.
77
92
, Chap. 5.
31.
Syamlal
,
M.
,
Musser
,
J.
, and
Dietiker
,
J.
,
2017
, “Two-Fluid Model in MFIX,”
Multiphase Flow Handbook (Mechanical and Aerospace Engineering Series)
, 2nd ed.,
E. E.
Michaelides
,
C. T.
Crowe
,
J. D.
Schwarzkopf
, eds.,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
, pp.
242
274
, Chap. 2, Sec. 2.7.
32.
Moran
,
M.
,
Shapiro
,
H.
,
Boettner
,
D.
, and
Bailey
,
M.
,
2018
,
Fundamentals of Engineering Thermodynamics
, 9th ed.,
John Wiley & Sons, Inc.
,
New York
.
33.
Gaggioli
,
R.
,
1961
, “
The Concept of Available Energy
,”
Chem. Eng. Sci.
,
16
(
1–2
), pp.
87
96
. 10.1016/0009-2509(61)87010-3
34.
Gaggioli
,
R.
,
1962
, “
The Concepts of Thermodynamic Friction, Thermal Available Energy, Chemical Available Energy and Thermal Energy
,”
Chem. Eng. Sci.
,
17
(
7
), pp.
523
530
. 10.1016/0009-2509(62)87003-1
35.
Gerber
,
S.
,
Behrendt
,
F.
, and
Oevermann
,
M.
,
2010
, “
An Eulerian Modeling Approach of Wood Gasification in a Bubbling Fluidized Bed Reactor Using Char as Bed Material
,”
Fuel
,
89
(
10
), pp.
2903
2917
. 10.1016/j.fuel.2010.03.034
36.
Zhong
,
W.
,
Yu
,
A.
,
Zhou
,
G.
,
Xie
,
J.
, and
Zhang
,
H.
,
2016
, “
CFD Simulation of Dense Particulate Reaction System: Approaches, Recent Advances and Applications
,”
Chem. Eng. Sci.
,
140
, pp.
16
43
. 10.1016/j.ces.2015.09.035
37.
Xue
,
Q.
, and
Fox
,
R.
,
2014
, “
Multi-Fluid CFD Modeling of Biomass Gasification in Polydisperse Fluidized-Bed Gasifiers
,”
Powder Technol.
,
254
, pp.
187
198
. 10.1016/j.powtec.2014.01.025
38.
Yu
,
L.
,
Lu
,
J.
,
Zhang
,
X.
, and
Zhang
,
S.
,
2007
, “
Numerical Simulation of the Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow (KTGF)
,”
Fuel
,
86
(
5–6
), pp.
722
734
. 10.1016/j.fuel.2006.09.008
39.
Sanchez
,
C.
,
1994
, “
Research on Biomass Fluidized Bed Devolatilization and Gasification
,”
D.Sc. thesis
,
UNICAMP
,
Campinas (in Portuguese)
.
40.
Sanchez
,
C. G.
, and
Lora
,
E. S.
,
1994
, “
Biomass Fluidized Bed Gasification Research in the State University of Campinas
,”
Energy Sustain. Dev.
,
I
(
4
), pp.
31
34
. 10.1016/S0973-0826(08)60069-1
41.
Brandao
,
F. L.
,
Verissimo
,
G. L.
,
Leite
,
M. A. H.
,
Leiroz
,
A. J. K.
, and
Cruz
,
M. E.
,
2018
, “
Computational Study of Sugarcane Bagasse Pyrolysis Modeling in a Bubbling Fluidized Bed Reactor
,”
Energy Fuels
,
32
(
2
), pp.
1711
1723
. 10.1021/acs.energyfuels.7b01603
42.
Rodriguez
,
R.
,
Magne
,
P.
, and
Deglise
,
X.
,
1987
, “
Sugar Cane Bagasse as a Feedstock for an Industrial Fast Pyrolysis Process Under Development
,”
J. Anal. Appl. Pyrolysis
,
12
(
3–4
), pp.
301
318
. 10.1016/0165-2370(87)85009-X
43.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
, 1st ed.,
Hemisphere Publishing Corporation
,
New York
.
44.
Ensinas
,
A. V.
, and
Nebra
,
S. A.
,
2009
, “Exergy Analysis as a Tool for Sugar and Ethanol Process,”
Handbook of Exergy, Hydrogen Energy and Hydropower Research
, 1st ed.,
G.
Pélissier
,
A.
Calvet
, eds.,
Nova Science Publishers Inc.
,
New York
, pp.
125
160
, Chap. 4.
You do not currently have access to this content.