Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

It is critical to well understand the combustion characteristics of the electrolytes inside lithium-ion batteries for safety concerns, particularly the electrolyte jet flames after thermal runaway. An electrolyte jet fire setup is developed in this study to investigate the combustion characteristics of electrolyte jets with the flame-retardant additive tris (2-chloroethyl) phosphate (TCEP) under high-temperature circumstances. Jet and ignition delay times and flammability are defined to characterize the flame-retardant effects. The fundamental parameters of self-extinguishing time and propagation rate are also measured for a comprehensive comparison. The experimental results show that the propagation of electrolyte flame at ambient temperature can be entirely stopped with 40 wt% of TCEP additives and 50 wt% can make the electrolyte nonflammable. Owing to the high boiling temperature and vaporization enthalpy of TCEP, more heat is required for the decomposition of electrolytes and TCEP mixtures, resulting in lower decomposition reaction rates and heat release rates. Thus, both the jet delay times and the ignition delay times significantly increase with the TCEP additives. Moreover, analyses on the spectrum of electrolyte jet flame reveal that the suppressing effects of TCEP on the combustion of electrolyte jets are operated by scavenging the OH radical and heat release.

References

1.
Xu
,
B.
,
Sharif
,
A.
,
Shahbaz
,
M.
, and
Dong
,
K.
,
2021
, “
Have Electric Vehicles Effectively Addressed CO2 Emissions? Analysis of Eight Leading Countries Using Quantile-on-Quantile Regression Approach
,”
Sustain. Prod. Consum.
,
27
, pp.
1205
1214
.
2.
Beganovic
,
N.
, and
Söffker
,
D.
,
2019
, “
Estimation of Remaining Useful Lifetime of Lithium-Ion Battery Based on Acoustic Emission Measurements
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
041901
.
3.
Ho
,
C. K.
,
Roesler
,
E. L.
,
Nguyen
,
T.
, and
Ellison
,
J.
,
2023
, “
Potential Impacts of Climate Change on Renewable Energy and Storage Requirements for Grid Reliability and Resource Adequacy
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
100904
.
4.
Albrechtowicz
,
P.
,
2023
, “
Electric Vehicle Impact on the Environment in Terms of the Electric Energy Source—Case Study
,”
Energy Rep.
,
9
, pp.
3813
3821
.
5.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
6.
Choudhari
,
V. G.
,
Dhoble
,
D. A. S.
, and
Sathe
,
T. M.
,
2020
, “
A Review on Effect of Heat Generation and Various Thermal Management Systems for Lithium Ion Battery Used for Electric Vehicle
,”
J. Energy Storage
,
32
, p.
101729
.
7.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.
8.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J.-M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
9.
Sun
,
P.
,
Bisschop
,
R.
,
Niu
,
H.
, and
Huang
,
X.
,
2020
, “
A Review of Battery Fires in Electric Vehicles
,”
Fire Technol.
,
56
(
4
), pp.
1361
1410
.
10.
Nazari
,
A.
,
Kavian
,
S.
, and
Nazari
,
A.
,
2020
, “
Lithium-Ion Batteries' Energy Efficiency Prediction Using Physics-Based and State-of-the-Art Artificial Neural Network-Based Models
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102001
.
11.
Wang
,
Q.
,
Jiang
,
L.
,
Yu
,
Y.
, and
Sun
,
J.
,
2019
, “
Progress of Enhancing the Safety of Lithium Ion Battery From the Electrolyte Aspect
,”
Nano Energy
,
55
, pp.
93
114
.
12.
Wang
,
Q.
,
Mao
,
B.
,
Stoliarov
,
S. I.
, and
Sun
,
J.
,
2019
, “
A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies
,”
Prog. Energy Combust.
,
73
, pp.
95
131
.
13.
Hossain Ahmed
,
S.
,
Kang
,
X.
, and
Bade Shrestha
,
S. O.
,
2015
, “
Effects of Temperature on Internal Resistances of Lithium-Ion Batteries
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
031901
.
14.
Deng
,
K.
,
Zeng
,
Q.
,
Wang
,
D.
,
Liu
,
Z.
,
Wang
,
G.
,
Qiu
,
Z.
,
Zhang
,
Y.
,
Xiao
,
M.
, and
Meng
,
Y.
,
2020
, “
Nonflammable Organic Electrolytes for High-Safety Lithium-Ion Batteries
,”
Energy Storage Mater.
,
32
, pp.
425
447
.
15.
Wong
,
K.
, and
Dia
,
S.
,
2016
, “
Nanotechnology in Batteries
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
014001
.
16.
Zeng
,
Z.
,
Wu
,
B.
,
Xiao
,
L.
,
Jiang
,
X.
,
Chen
,
Y.
,
Ai
,
X.
,
Yang
,
H.
, and
Cao
,
Y.
,
2015
, “
Safer Lithium Ion Batteries Based on Nonflammable Electrolyte
,”
J. Power Sources
,
279
, pp.
6
12
.
17.
Qiu
,
Y.
, and
Jiang
,
F.
,
2022
, “
A Review on Passive and Active Strategies of Enhancing the Safety of Lithium-Ion Batteries
,”
Int. J. Heat Mass Transfer
,
184
, p.
122288
.
18.
Zhang
,
X.
,
Sun
,
Q.
,
Zhen
,
C.
,
Niu
,
Y.
,
Han
,
Y.
,
Zeng
,
G.
,
Chen
,
D.
, et al
,
2021
, “
Recent Progress in Flame-Retardant Separators for Safe Lithium-Ion Batteries
,”
Energy Storage Mater.
,
37
, pp.
628
647
.
19.
Xu
,
K.
,
Ding
,
M. S.
,
Zhang
,
S.
,
Allen
,
J. L.
, and
Jow
,
T. R.
,
2002
, “
An Attempt to Formulate Nonflammable Lithium Ion Electrolytes With Alkyl Phosphates and Phosphazenes
,”
J. Electrochem. Soc.
,
149
(
5
), p.
A622
.
20.
Xiang
,
H. F.
,
Xu
,
H. Y.
,
Wang
,
Z. Z.
, and
Chen
,
C. H.
,
2007
, “
Dimethyl Methylphosphonate (Dmmp) as an Efficient Flame Retardant Additive for the Lithium-Ion Battery Electrolytes
,”
J. Power Sources
,
173
(
1
), pp.
562
564
.
21.
Hess
,
S.
,
Wohlfahrt-Mehrens
,
M.
, and
Wachtler
,
M.
,
2015
, “
Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements
,”
J. Electrochem. Soc.
,
162
(
2
), pp.
A3084
A3097
.
22.
Liu
,
Y.
,
Fang
,
S.
,
Shi
,
P.
,
Luo
,
D.
,
Yang
,
L.
, and
Hirano
,
S.-I.
,
2016
, “
Ternary Mixtures of Nitrile-Functionalized Glyme, Non-Flammable Hydrofluoroether and Fluoroethylene Carbonate as Safe Electrolytes for Lithium-Ion Batteries
,”
J. Power Sources
,
331
, pp.
445
451
.
23.
Fu
,
Y.
,
Lu
,
S.
,
Shi
,
L.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2018
, “
Ignition and Combustion Characteristics of Lithium Ion Batteries Under Low Atmospheric Pressure
,”
Energy
,
161
, pp.
38
45
.
24.
Guo
,
F.
,
Ozaki
,
Y.
,
Nishimura
,
K.
,
Hashimoto
,
N.
, and
Fujita
,
O.
,
2020
, “
Influence of Lithium Salts on the Combustion Characteristics of Dimethyl Carbonate-Based Electrolytes Using a Wick Combustion Method
,”
Combust. Flame
,
213
, pp.
314
321
.
25.
Peiyan
,
Q. I.
,
Jie
,
Z. M.
,
Da
,
J.
,
Kai
,
Y.
,
Jianling
,
L.
,
Yilin
,
L.
,
Fei
,
G.
, and
Hao
,
L.
,
2022
, “
Combustion Characteristics of Lithium–Iron–Phosphate Batteries With Different Combustion States
,”
eTransportation
,
11
, p.
100148
.
26.
Zou
,
K.
,
Chen
,
X.
,
Ding
,
Z.
,
Gu
,
J.
, and
Lu
,
S.
,
2020
, “
Jet Behavior of Prismatic Lithium-Ion Batteries During Thermal Runaway
,”
Appl. Therm. Eng.
,
179
, p.
115745
.
27.
Fu
,
Y.
,
Lu
,
S.
,
Shi
,
L.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2016
, “
Combustion Characteristics of Electrolyte Pool Fires for Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
A2022
A2028
.
28.
Guerfi
,
A.
,
Dontigny
,
M.
,
Charest
,
P.
,
Petitclerc
,
M.
,
Lagacé
,
M.
,
Vijh
,
A.
, and
Zaghib
,
K.
,
2010
, “
Improved Electrolytes for Li-Ion Batteries: Mixtures of Ionic Liquid and Organic Electrolyte With Enhanced Safety and Electrochemical Performance
,”
J. Power Sources
,
195
(
3
), pp.
845
852
.
29.
Chen
,
M.
,
Mei
,
J.
, and
Liu
,
H.
,
2020
, “
Comparative Experimental Study on Combustion Characteristics of Typical Combustible Components for Lithium-Ion Battery
,”
Int. J. Energy Res.
,
44
(
1
), pp.
218
228
.
30.
Chen
,
M.
,
Xiao
,
R.
,
Zhao
,
L.
,
Weng
,
J.
,
Ouyang
,
D.
,
Chen
,
Q.
,
Yao
,
J.
, and
Wang
,
J.
,
2022
, “
Experimental Study on the Combustion Characteristics of Carbonate Solvents Under Different Thermal Radiation by Cone Calorimeter
,”
Appl. Therm. Eng.
,
211
, p.
118428
.
31.
Mei
,
J.
,
Liu
,
H.
, and
Chen
,
M.
,
2020
, “
Experimental Study on Combustion Behavior of Mixed Carbonate Solvents and Separator Used in Lithium-Ion Batteries
,”
ASME J. Therm. Anal. Calorim.
,
139
(
2
), pp.
1255
1264
.
32.
Nagasubramanian
,
G.
, and
Orendorff
,
C. J.
,
2011
, “
Hydrofluoroether Electrolytes for Lithium-Ion Batteries: Reduced Gas Decomposition and Nonflammable
,”
J. Power Sources
,
196
(
20
), pp.
8604
8609
.
33.
Nagasubramanian
,
G.
, and
Fenton
,
K.
,
2013
, “
Reducing Li-Ion Safety Hazards Through Use of Non-Flammable Solvents and Recent Work at Sandia National Laboratories
,”
Electrochim. Acta
,
101
, pp.
3
10
.
34.
Shim
,
E.-G.
,
Park
,
I.-J.
,
Nam
,
T.-H.
,
Kim
,
J.-G.
,
Kim
,
H.-S.
, and
Moon
,
S.-I.
,
2010
, “
Electrochemical Performance of Tris(2-Chloroethyl) Phosphate as a Flame-Retarding Additive for Lithium-Ion Batteries
,”
Met. Mater. Int.
,
16
(
4
), pp.
587
594
.
35.
Xia
,
H.
,
Zhang
,
W.
,
Yang
,
Y.
,
Zhang
,
W.
,
Purchase
,
D.
,
Zhao
,
C.
,
Song
,
X.
, and
Wang
,
Y.
,
2021
, “
Degradation Mechanism of Tris(2-Chloroethyl) Phosphate (Tcep) as an Emerging Contaminant in Advanced Oxidation Processes: A Dft Modelling Approach
,”
Chemosphere
,
273
, p.
129674
.
36.
Liu
,
J.
,
Tang
,
L.
,
Liu
,
Y.
,
Zhang
,
D.
, and
Jiang
,
X.
,
2023
, “
Insights Into Characterization of Organophosphorus Flame Retardants Transformation Under Thermal Activation Persulphate
,”
Process Saf. Environ.
,
172
, pp.
1110
1119
.
37.
Doughty
,
D. H.
,
Roth
,
E. P.
,
Crafts
,
C. C.
,
Nagasubramanian
,
G.
,
Henriksen
,
G.
, and
Amine
,
K.
,
2005
, “
Effects of Additives on Thermal Stability of Li Ion Cells
,”
J. Power Sources
,
146
(
1
), pp.
116
120
.
38.
Yang
,
A.
,
Yang
,
C.
,
Xie
,
K.
,
Xin
,
S.
,
Xiong
,
Z.
,
Li
,
K.
,
Guo
,
Y.-G.
, and
You
,
Y.
,
2023
, “
Benchmarking the Safety Performance of Organic Electrolytes for Rechargeable Lithium Batteries: A Thermochemical Perspective
,”
ACS Energy Lett.
,
8
(
1
), pp.
836
843
.
39.
Huang
,
Q.
,
Weng
,
J.
,
Ouyang
,
D.
,
Chen
,
M.
,
Wang
,
X.
, and
Wang
,
J.
,
2023
, “
Comparative Studies on the Combustion Characteristics of Electrolytes and Carbonate Mixed Solvents With Flame Retardant Additives Under Low Pressures Case Study
,”
Therm. Eng.
,
43
, p.
102810
.
40.
Ping
,
P.
,
Wang
,
Q.
,
Huang
,
P.
,
Li
,
K.
,
Sun
,
J.
,
Kong
,
D.
, and
Chen
,
C.
,
2015
, “
Study of the Fire Behavior of High-Energy Lithium-Ion Batteries With Full-Scale Burning Test
,”
J. Power Sources
,
285
, pp.
80
89
.
41.
Semenov
,
N. N.
,
Boudart
,
M.
, and
Wise
,
H.
,
1960
, “
Some Problems in Chemical Kinetics and Reactivity, Vol. 2
,”
Phys. Today
,
13
(
3
), pp.
56
56
.
42.
Kumai
,
K.
,
Miyashiro
,
H.
,
Kobayashi
,
Y.
,
Takei
,
K.
, and
Ishikawa
,
R.
,
1999
, “
Gas Generation Mechanism Due to Electrolyte Decomposition in Commercial Lithium-Ion Cell
,”
J. Power Sources
,
81–82
, pp.
715
719
.
You do not currently have access to this content.