Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Process intensification of fuel reforming using micro-reactors has become crucial for feed flexibility in H2 production for fuel cells. In the literature on micro-reactors, energy supply for these endothermic reactions has faced limitations, relying on external heating, or autothermal operation. This paper explores a novel approach using a thin-film catalytic heater to develop micro-reactors. The study focuses on dry methane reforming in a simplified micro-reactor where thermal energy is supplied through electric resistive heating of a thin carbon sheet with a catalyst applied to its surface. The thin-catalytic heated layer inside the reactor minimizes energy losses and the reactor footprint. Power input was varied from 90 W to 225 W to understand its impact on the reactor temperature, CH4 conversion, H2 and CO yields. Fast thermal response times were achieved using the carbon paper as a thin film for heating. Ni/MgO impregnated onto carbon paper was utilized as the catalytic heating element which resulted in CH4 conversions greater than 60% at temperature above750 K. Influence of operating conditions such as the input molar ratio of CO2/CH4 and gas hourly space velocity (GHSV) were also investigated to understand the scope of the catalyst in this setup. High GHSVs (592,885 and 948,617 ml/(h·gcatalyst)) were tested to understand the throughput achievable using this setup. This approach demonstrates improved scope and feasibility for further intensification compared to conventionally heated micro-reactors. The research paves the way for efficient and compact micro-reactors for fuel reforming processes.

References

1.
Yadav
,
D.
,
Lu
,
X.
,
Vishwakarma
,
C. B.
, and
Jing
,
D.
,
2023
, “
Advancements in Microreactor Technology for Hydrogen Production Via Steam Reforming: A Comprehensive Review of Experimental Studies
,”
J. Power Sources
,
585
, p.
233621
.
2.
Samsun
,
R. C.
,
Prawitz
,
M.
,
Tschauder
,
A.
,
Meißner
,
J.
,
Pasel
,
J.
, and
Peters
,
R.
,
2020
, “
Reforming of Diesel and Jet Fuel for Fuel Cells on a Systems Level: Steady-State and Transient Operation
,”
Appl. Energy
,
279
, p.
115882
.
3.
Zhou
,
S.
,
Zhong
,
Y.
,
Lin
,
W.
,
You
,
H.
,
Li
,
X.
,
Wu
,
L.
, et al
,
2022
, “
Design and Performance Evaluation of Flexible Tubular Microreactor for Methanol Steam Reforming Reaction
,”
Int. J. Hydrogen Energy
,
47
(
85
), pp.
36022
36031
.
4.
Cavallaro
,
S.
,
Chiodo
,
V.
,
Vita
,
A.
, and
Freni
,
S.
,
2003
, “
Hydrogen Production by Auto-Thermal Reforming of Ethanol on Rh/Al2O3 Catalyst
,”
J. Power Sources
,
123
(
1
), pp.
10
16
.
5.
Xu
,
J.
,
Zhou
,
W.
,
Li
,
Z.
,
Wang
,
J.
, and
Ma
,
J.
,
2009
, “
Biogas Reforming for Hydrogen Production Over Nickel and Cobalt Bimetallic Catalysts
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6646
6654
.
6.
Yüksel Alpaydın
,
C.
,
Colpan
,
C. O.
,
Karaoğlan
,
M. U.
, and
Karahan Gülbay
,
S.
,
2021
, “
A Comparison of the Effects of Sodium Borohydride-Based Hydrogen Storage System and Compressed Hydrogen Storage Tank on the Fuel Cell Vehicle Performance
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120909
.
7.
Ganguli
,
A.
, and
Bhatt
,
V.
,
2023
, “
Hydrogen Production Using Advanced Reactors by Steam Methane Reforming: A Review
,”
Front. Therm. Eng.
,
3
, p.
1143987
.
8.
Lavoie
,
J.-M.
,
2014
, “
Review on Dry Reforming of Methane, A Potentially More Environmentally-Friendly Approach to the Increasing Natural Gas Exploitation
,”
Front. Chem.
,
2
, pp.
Article 81
17
.
9.
Fan
,
M. S.
,
Abdullah
,
A. Z.
, and
Bhatia
,
S.
,
2011
, “
Utilization of Greenhouse Gases Through Dry Reforming: Screening of Nickel-Based Bimetallic Catalysts and Kinetic Studies
,”
ChemSusChem
,
4
(
11
), pp.
1643
1653
.
10.
Pakhare
,
D.
, and
Spivey
,
J.
,
2014
, “
A Review of Dry (CO2) Reforming of Methane Over Noble Metal Catalysts
,”
Chem. Soc. Rev.
,
43
(
22
), pp.
7813
7837
.
11.
Peloquin
,
J.-F.
,
Francoeur
,
D.
,
Leclerc
,
W.
,
Mehanovic
,
D.
,
Dufault
,
J.-F.
,
Camus
,
P.
, et al
,
2024
, “
Electrified Steam Methane Reforming Microreactor
,”
Int. J. Hydrogen Energy
,
49
(
Part A
), pp.
907
915
.
12.
Yan
,
Y.
,
Shen
,
K.
,
Cui
,
Y.
,
He
,
Z.
,
Zhang
,
L.
,
Yang
,
Z.
, and
Ran
,
J.
,
2020
, “
Effects of Slitting Size and Inlet Operating Conditions on Hydrogen Combustion Characteristics in a Micro-Combustor With a Controllable Vortex Slotted Bluff Body
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042302
.
13.
Ayabe
,
S.
,
Omoto
,
H.
,
Utaka
,
T.
,
Kikuchi
,
R.
,
Sasaki
,
K.
,
Teraoka
,
Y.
, and
Eguchi
,
K.
,
2003
, “
Catalytic Autothermal Reforming of Methane and Propane Over Supported Metal Catalysts
,”
Appl. Catal., A
,
241
(
1–2
), pp.
261
269
.
14.
Scenna
,
R. M.
,
2017
, “
Non-Catalytic Thermal Reforming of JP-8 in a Distributed Reactor
,”
Ph.D. thesis
,
University of Maryland
,
College Park, MD
.
15.
Scenna
,
R.
, and
Gupta
,
A. K.
,
2018
, “
The Influence of the Distributed Reaction Regime on Fuel Reforming Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122002
.
16.
Scenna
,
R.
, and
Gupta
,
A. K.
,
2016
, “
Preheats Effects on JP8 Reforming Under Volume Distributed Reaction Conditions
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032202
.
17.
Kosa
,
E.
, and
Ezgi
,
C.
,
2021
, “
Numerical Modeling of Hydrogen-Rich Gas Production From Gasoline Autothermal Reforming in a Plug Flow Reactor for Electric Vehicles
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120910
.
18.
Shin
,
W. C.
, and
Besser
,
R. S.
,
2007
, “
Toward Autonomous Control of Microreactor System for Steam Reforming of Methanol
,”
J. Power Sources
,
164
(
1
), pp.
328
335
.
19.
Badakhsh
,
A.
,
Kwak
,
Y.
,
Lee
,
Y.-J.
,
Jeong
,
H.
,
Kim
,
Y.
,
Sohn
,
H.
, et al
,
2021
, “
A Compact Catalytic Foam Reactor for Decomposition of Ammonia by the Joule-Heating Mechanism
,”
Chem. Eng. J.
,
426
, p.
130802
.
20.
Zheng
,
L.
,
Ambrosetti
,
M.
,
Marangoni
,
D.
,
Beretta
,
A.
,
Groppi
,
G.
, and
Tronconi
,
E.
,
2023
, “
Electrified Methane Steam Reforming on a Washcoated SiSiC Foam for Low-Carbon Hydrogen Production
,”
AIChE J.
,
69
(
1
), p.
e17620
.
21.
Dou
,
L.
,
Yan
,
C.
,
Zhong
,
L.
,
Zhang
,
D.
,
Zhang
,
J.
,
Li
,
X.
, and
Xiao
,
L.
,
2020
, “
Enhancing CO2 Methanation Over a Metal Foam Structured Catalyst by Electric Internal Heating
,”
Chem. Commun.
,
56
(
2
), pp.
205
208
.
22.
Bolívar Caballero
,
J. J.
,
Han
,
T.
,
Svanberg
,
R.
,
Zaini
,
I. N.
,
Yang
,
H.
,
Gond
,
R.
, et al
,
2023
, “
Advanced Application of a Geometry-Enhanced 3D-Printed Catalytic Reformer for Syngas Production
,”
Energy Convers. Manage.
,
287
, p.
117071
.
23.
Lu
,
Y. R.
,
Pudasainee
,
D.
,
Khan
,
M.
,
Gupta
,
R.
, and
Nikrityuk
,
P. A.
,
2022
, “
Experimental and Numerical Study of Volt–Ampere Characteristics of a Packed Tube Heated by Joule Heating
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052105
.
24.
Zhang
,
Q.
,
Nakaya
,
M.
,
Ootani
,
T.
,
Takahashi
,
H.
,
Sakurai
,
M.
, and
Kameyama
,
H.
,
2007
, “
Simulation and Experimental Analysis on the Development of a Co-Axial Cylindrical Methane Steam Reformer Using an Electrically Heated Alumite Catalyst
,”
Int. J. Hydrogen Energy
,
32
(
16
), pp.
3870
3879
.
25.
Lu
,
Y. R.
, and
Nikrityuk
,
P.
,
2018
, “
A Fixed-Bed Reactor for Energy Storage in Chemicals (E2C): Proof of Concept
,”
Appl. Energy
,
228
, pp.
593
607
.
26.
Yu
,
K.
,
Wang
,
C.
,
Zheng
,
W.
, and
Vlachos
,
D. G.
,
2023
, “
Dynamic Electrification of Dry Reforming of Methane With In Situ Catalyst Regeneration
,”
ACS Energy Lett.
,
8
(
2
), pp.
1050
1057
.
27.
Dong
,
Q.
,
Yao
,
Y.
,
Cheng
,
S.
,
Alexopoulos
,
K.
,
Gao
,
J.
,
Srinivas
,
S.
, et al
,
2022
, “
Programmable Heating and Quenching for Efficient Thermochemical Synthesis
,”
Nature
,
605
(
7910
), pp.
470
476
.
28.
Coker
,
E. N.
,
Ambrosini
,
A.
,
Rodriguez
,
M. A.
, and
Miller
,
J. E.
,
2011
, “
Ferrite-YSZ Composites for Solar Thermochemical Production of Synthetic Fuels: In Operando Characterization of CO2 Reduction
,”
J. Mater. Chem.
,
21
(
29
), p.
10767
.
29.
Liu
,
B.
,
Slocombe
,
D.
,
AlKinany
,
M.
,
AlMegren
,
H.
,
Wang
,
J.
,
Arden
,
J.
, et al
,
2016
, “
Advances in the Study of Coke Formation Over Zeolite Catalysts in the Methanol-to-Hydrocarbon Process
,”
Appl. Petrochem. Res.
,
6
(
3
), pp.
209
215
.
30.
Sehested
,
J.
,
Gelten
,
J. A. P.
,
Remediakis
,
I. N.
,
Bengaard
,
H.
, and
Nørskov
,
J. K.
,
2004
, “
Sintering of Nickel Steam-Reforming Catalysts: Effects of Temperature and Steam and Hydrogen Pressures
,”
J. Catal.
,
223
(
2
), pp.
432
443
.
31.
Ding
,
X.
,
Yang
,
Y.
,
Li
,
Z.
,
Huang
,
P.
,
Liu
,
X.
,
Guo
,
Y.
, and
Wang,
Y.
,
2023
, “
Engineering a Nickel–Oxygen Vacancy Interface for Enhanced Dry Reforming of Methane: A Promoted Effect of CeO2 Introduction into Ni/MgO
,”
ACS Catal.
,
13
(
23
), pp.
15535
15545
.
32.
San-José-Alonso
,
D.
,
Juan-Juan
,
J.
,
Illán-Gómez
,
M. J.
, and
Román-Martínez
,
M. C.
,
2009
, “
Co and Bimetallic Ni–Co Catalysts for the Dry Reforming of Methane
,”
Appl. Catal., A
,
371
(
1–2
), pp.
54
59
.
33.
Zhang
,
J.
,
Wang
,
H.
, and
Dalai
,
A. K.
,
2007
, “
Development of Stable Bimetallic Catalysts for Carbon Dioxide Reforming of Methane
,”
J. Catal.
,
249
(
2
), pp.
300
310
.
34.
Bshish
,
A.
,
Yaakob
,
Z.
,
Ebshish
,
A.
, and
Alhasan
,
F. H.
,
2014
, “
Hydrogen Production Via Ethanol Steam Reforming Over Ni/Al2O3 Catalysts: Effect of Ni Loading
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012601
.
35.
Arena
,
F.
,
Frusteri
,
F.
, and
Parmaliana
,
A.
,
1999
, “
Alkali Promotion of Ni/MgO Catalysts
,”
Appl. Catal., A
,
187
(
1
), pp.
127
140
.
36.
Song
,
Y.
,
Ozdemir
,
E.
,
Ramesh
,
S.
,
Adishev
,
A.
,
Subramanian
,
S.
,
Harale
,
A.
, et al
,
2020
, “
Dry Reforming of Methane by Stable Ni–Mo Nanocatalysts on Single-Crystalline MgO
,”
Science
,
367
(
6479
), pp.
777
781
.
37.
Asencios
,
Y. J. O.
, and
Assaf
,
E. M.
,
2013
, “
Combination of Dry Reforming and Partial Oxidation of Methane on NiO–MgO–ZrO2 Catalyst: Effect of Nickel Content
,”
Fuel Process. Technol.
,
106
, pp.
247
252
.
38.
Ruckenstein
,
E.
, and
Hu
,
Y. H.
,
1995
, “
Carbon Dioxide Reforming of Methane Over Nickel/Alkaline Earth Metal Oxide Catalysts
,”
Appl. Catal., A
,
133
(
1
), pp.
149
161
.
You do not currently have access to this content.