Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Due to its renewable and sustainable features, wind energy is growing around the world. However, the wind speed fluctuation induces the intermittent character of the generated wind power. Thus, wind power estimation, through wind speed forecasting, is very inherent to ensure effective power scheduling. Four wind speed predictors based on deep learning networks and optimization algorithms were developed. The designed topologies are the multilayer perceptron neural network, the long short-term memory network, the convolutional short-term memory network, and the bidirectional short-term neural network coupled with Bayesian optimization. The models' performance was evaluated through evaluation indicators mainly, the root mean squared error, the mean absolute error, and the mean absolute percentage. Based on the simulation results, all of them show considerable prediction results. Moreover, the combination of the long short-term memory network and the optimization algorithm is more robust in wind speed forecasting with a mean absolute error equal to 0.23 m/s. The estimated wind power was investigated for optimal Wind/Photovoltaic/Battery/Diesel energy management. The handling approach lies in the continuity of the load supply through the renewable sources as a priority, the batteries on the second order, and finally the diesel. The proposed management strategy respects the designed criteria with a satisfactory contribution percentage of renewable sources equal to 71%.

References

1.
Kahraman
,
G.
,
2024
, “
Modeling of Optimal Power Generation in Small Hydropower Plants
,”
ASME J. Energy Resour. Technol.
,
146
(
4
), p.
042101
.
2.
Hedayati
,
P.
,
Ramiar
,
A.
,
Hedayati
,
N.
,
2024
, “
Analyzing the Impact of a Curved Stator on the Performance of a Savonius Wind Turbine Using Computational Fluid Dynamics
,”
Iran. J. Energy Environ.
,
15
(
3
), pp.
279
286
.
3.
Peddakapu
,
K.
,
Mohamed
,
M. R.
,
Srinivasarao
,
P.
, and
Arya
,
Y.
,
2024
, “
Assessment of Energy Storage and Renewable Energy Sources-Based Two-Area Microgrid System Using Optimized Fractional Order Controllers
,”
J. Energy Storage
,
86
, p.
111191
.
4.
Tsai
,
W. C.
,
Hong
,
C. M.
,
Tu
,
C. S.
,
Lin
,
W. M.
, and
Chen
,
C. H.
,
2023
, “
A Review of Modern Wind Power Generation Forecasting Technologies
,”
Sustainability
,
15
(
14
), p.
10757
.
5.
Zhang
,
Y.
,
Kong
,
X.
,
Wang
,
J.
,
Wang
,
H.
, and
Cheng
,
X.
,
2024
, “
Wind Power Forecasting System With Data Enhancement and Algorithm Improvement
,”
Renewable Sustainable Energy Rev.
,
196
, p.
114349
.
6.
Zhu
,
J.
,
Su
,
L.
, and
Li
,
Y.
,
2022
, “
Wind Power Forecasting Based on New Hybrid Model With TCN Residual Modification
,”
Energy AI
,
10
, p.
100199
.
7.
Lydia
,
M.
,
Edwin Prem Kumar
,
G.
, and
Akash
,
R.
,
2024
, “
Wind Speed and Wind Power Forecasting Models
,”
Energy Environ.
,
2024
, p.
0958305X241228515
.
8.
Hu
,
Y.
,
Liu
,
H.
,
Wu
,
S.
,
Zhao
,
Y.
,
Wang
,
Z.
, and
Liu
,
X.
,
2024
, “
Temporal Collaborative Attention for Wind Power Forecasting
,”
Appl. Energy
,
357
, p.
122502
.
9.
Zhang
,
F.
,
Ren
,
X.
, and
Liu
,
Y.
,
2024
, “
A Refined Wind Power Forecasting Method With High Temporal Resolution Based on Light Convolutional Neural Network Architecture
,”
Energies
,
17
(
5
), p.
1183
.
10.
Nor
,
S. R. M.
,
Salleh
,
N. A.
,
Norrulashikin
,
S. M.
,
Kamarudin
,
A. N.
, and
Khaliludin
,
N. I. A.
,
2024
, “
Wind Speed Forecasting With ARIMA Fourier Time Series Model
,”
AIP Conf. Proc.
,
2895
(
1
), p.
090008
.
11.
Eryilmaz
,
S.
,
Bulanik
,
İ
, and
Devrim
,
Y.
,
2024
, “
Computing Reliability Indices of a Wind Power System via Markov Chain Modelling of Wind Speed
,”
Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
,
238
(
1
), pp.
71
78
.
12.
Simankov
,
V.
,
Buchatskiy
,
P.
,
Kazak
,
A.
,
Teploukhov
,
S.
,
Onishchenko
,
S.
,
Kuzmin
,
K.
, and
Chetyrbok
,
P.
,
2024
, “
A Solar and Wind Energy Evaluation Methodology Using Artificial Intelligence Technologies
,”
Energies
,
17
(
2
), p.
416
.
13.
Ali
,
M.
,
Prasad
,
R.
,
Jamei
,
M.
,
Malik
,
A.
,
Xiang
,
Y.
,
Abdulla
,
S.
,
Deo
,
R. C.
,
Farooque
,
A. A.
, and
Labban
,
A. H.
,
2024
, “
Short-Term Wave Power Forecasting With Hybrid Multivariate Variational Mode Decomposition Model Integrated With Cascaded Feedforward Neural Networks
,”
Renewable Energy
,
221
, p.
119773
.
14.
Wei
,
C. C.
, and
Chiang
,
C. S.
,
2024
, “
Assessment of Offshore Wind Power Potential and Wind Energy Prediction Using Recurrent Neural Networks
,”
J. Mar. Sci. Eng.
,
12
(
2
), p.
283
.
15.
Koroglu
,
T.
, and
Ekici
,
E.
,
2024
, “
A Comparative Study on the Estimation of Wind Speed and Wind Power Density Using Statistical Distribution Approaches and Artificial Neural Network-Based Hybrid Techniques in Çanakkale, Türkiye
,”
Appl. Sci.
,
14
(
3
), p.
1267
.
16.
Indira
,
G.
,
Bhavani
,
M.
,
Brinda
,
R.
, and
Zahira
,
R.
,
2024
, “
Electricity Load Demand Prediction for Microgrid Energy Management System Using Hybrid Adaptive Barnacle-Mating Optimizer with Artificial Neural Network Algorithm
,”
Energy Technol.
,
12
(
5
), p.
2301091
.
17.
Wang
,
C.
,
Lin
,
H.
,
Hu
,
H.
,
Yang
,
M.
, and
Ma
,
L.
,
2024
, “
A Hybrid Model with Combined Feature Selection Based on Optimized VMD and Improved Multi-Objective Coati Optimization Algorithm for Short-Term Wind Power Prediction
,”
Energy
,
293
, p.
130684
.
18.
Ammar
,
R. B.
,
Ammar
,
M. B.
, and
Oualha
,
A.
,
2020
, “
Photovoltaic Power Forecast Using Empirical Models and Artificial Intelligence Approaches for Water Pumping Systems
,”
Renewable Energy
,
153
, pp.
1016
1028
.
19.
Ammar
,
M. B.
,
Ammar
,
R. B.
, and
Oualha
,
A.
,
2021
, “
Photovoltaic Power Prediction for Solar Car Park Lighting Office Energy Management
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p. 031303.
20.
Yan
,
J.
,
Liu
,
Y.
,
Meng
,
H.
,
Li
,
L.
, and
Ren
,
X.
,
2024
, “
Wind Turbine Generator Early Fault Diagnosis Using LSTM-Based Stacked Denoising Autoencoder Network and Stacking Algorithm
,”
Int. J. Green Energy
,
2024
, pp.
1
16
.
21.
Sadeghi
,
D.
,
Golshanfard
,
A.
,
Eslami
,
S.
,
Rahbar
,
K.
, and
Kari
,
R.
,
2023
, “
Improving PV Power Plant Forecast Accuracy: A Hybrid Deep Learning Approach Compared Across Short, Medium, and Long-Term Horizons
,”
Renewable Energy Focus
,
45
, pp.
242
258
.
22.
Song
,
C.
,
Yang
,
H.
,
Meng
,
X. B.
,
Yang
,
P.
,
Cai
,
J.
,
Bao
,
H.
, and
Xu
,
K.
,
2024
, “
A Novel Deep-Learning Framework for Short-Term Prediction of Cooling Load in Public Buildings
,”
J. Cleaner Prod.
,
434
, p.
139796
.
23.
Qu
,
Z.
,
Hou
,
X.
,
Li
,
J.
, and
Hu
,
W.
,
2024
, “
Short-Term Wind Farm Cluster Power Prediction Based on Dual Feature Extraction and Quadratic Decomposition Aggregation
,”
Energy
,
290
, p.
130155
.
24.
Toughzaoui
,
Y.
,
Toosi
,
S. B.
,
Chaoui
,
H.
,
Louahlia
,
H.
,
Petrone
,
R.
,
Le Masson
,
S.
, and
Gualous
,
H.
,
2022
, “
State of Health Estimation and Remaining Useful Life Assessment of Lithium-Ion Batteries: A Comparative Study’
,”
J. Energy Storage
,
51
, p.
104520
.
25.
Sopeña
,
J. M. G.
,
Pakrashi
,
V.
, and
Ghosh
,
B.
,
2023
, “
A Benchmarking Framework for Performance Evaluation of Statistical Wind Power Forecasting Models
,”
Sustain. Energy Technol. Assess.
,
57
, p.
103246
.
26.
Maciel
,
J. N.
,
Ledesma
,
J. J. G.
, and
Junior
,
O. H. A.
,
2024
, “
Hybrid Prediction Method of Solar Irradiance Applied to Short-Term Photovoltaic Energy Generation
,”
Renewable Sustainable Energy Rev.
,
192
, p.
114185
.
27.
Jamshidi
,
S.
,
Pourhossein
,
K.
, and
Asadi
,
M.
,
2021
, “
Size Estimation of Wind/Solar Hybrid Renewable Energy Systems Without Detailed Wind and Irradiation Data: A Feasibility Study
,”
Energy Convers. Manage.
,
234
, p.
113905
.
28.
Alturki
,
F. A.
,
Farh
,
H. M. H.
,
Al-Shamma’a
,
A. A.
, and
AlSharabi
,
K.
,
2020
, “
Techno-Economic Optimization of Small-Scale Hybrid Energy Systems Using Manta Ray Foraging Optimizer
,”
Electronics
,
9
(
12
), p.
2045
.
29.
Das
,
B. K.
,
Alotaibi
,
M. A.
,
Das
,
P.
,
Islam
,
M. S.
,
Das
,
S. K.
, and
Hossain
,
M. A.
,
2021
, “
Feasibility and Techno-Economic Analysis of Stand-Alone and Grid-Connected PV/Wind/Diesel/Batt Hybrid Energy System: A Case Study
,”
Energy Strategy Rev.
,
37
, p.
100673
.
30.
Ishraque
,
M. F.
,
Shezan
,
S. A.
,
Nur
,
S. J. N.
, and
Islam
,
M. S.
,
2021
, “
Optimal Sizing and Assessment of an Islanded Photovoltaic-Battery-Diesel Generator Microgrid Applicable to a Remote School of Bangladesh
,”
Eng. Rep.
,
3
(
1
), p.
12281
.
31.
Kechiche
,
O. B. H. B.
,
Hamza
,
M.
, and
Sammouda
,
H.
,
2020
, “Dimensioning of an Autonomous Photovoltaic Installation: Case Study in Msaken, Sousse(Tunisia),”
Energy Efficiency and Sustainable Lighting
,
IntechOpen
,
London, UK
, p.
109
.
32.
Luo
,
T.
,
Wu
,
G.
,
Zhang
,
P.
, and
Zhang
,
H.
,
2024
, “
A New Similarity Criterion for Wind Tunnel Testing of Floating Wind Turbines Achieving Dynamic Aerodynamic Characteristics Similarity
,”
Energy Convers. Manage.
,
301
, p.
118015
.
33.
Pettas
,
V.
, and
Cheng
,
P. W.
,
2024
, “
Surrogate Modeling and Aeroelastic Analysis of a Wind Turbine With Down-Regulation, Power Boosting, and IBC Capabilities
,”
Energies
,
17
(
6
), p.
1284
.
34.
Wang
,
S.
,
Wang
,
J.
,
Zeng
,
B.
, and
Zhao
,
W.
,
2024
, “
A Structure for Predicting Wind Speed Using Fuzzy Granulation and Optimization Techniques
,”
Appl. Intell.
,
2024
(
5
), pp.
1
25
.
You do not currently have access to this content.