Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study employs thermogravimetric analysis (TGA) to investigate the thermal degradation behavior of various components of refuse-derived fuel (RDF). The analysis is conducted individually for different RDF fractions, including cardboard, mixed papers, mixed plastics, other organics, and fines, alongside raw RDF. TGA experiments are performed in triplicate to ensure repeatability and homogeneity assessment. The results reveal distinct degradation profiles for each material, influenced by moisture content. Cardboard and mixed papers exhibit similar decomposition characteristics attributed to their cellulose content. Cardboard undergoes initial moisture-driven mass loss (5.52%), followed by cellulose and hemicellulose decomposition (58.86%) at 250–400 °C and lignin degradation (10.1%) at 400–500 °C. In contrast, mixed plastics, with an initial moisture content of 0.81%, manifest multiple decomposition steps: polyvinyl chloride (PVC) degradation (3.84%) at 200–335 °C, polystyrene (PS) degradation (6.63%) at 335–400 °C, polypropylene (PP) degradation (24.41%) at 400–450 °C, and high-density polyethylene (HDPE)/low-density polyethylene (LDPE) degradation (54.6%) at 400–500 °C. Other organics, with 1.47% initial moisture content, undergo cellulose decomposition (37.98%) at 200–381 °C and polyester/microfilament degradation (21.3%) at 381–450 °C. Fines display cellulose and hemicellulose decomposition (29.8%) at 200–383 °C and plastics/polyester degradation (43%) at 383–550 °C. LDPE in mixed plastics undergoes pure polymer decomposition at 483.6 °C.

References

1.
Aydemir
,
S. O.
,
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2022
, “
Evaluation of Synergy Between Lignite and Carbonized Biomass During Co-Combustion
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052302
.
2.
Rashwan
,
S.
,
Moreau
,
S.
, and
Boulet
,
M.
,
2023
, “
Evaluation of Guide Parameters for Batch Torrefaction Experiments of Refused-Derived Fuel, RDF
,”
Proceedings of Combustion Institute – Canadian Section 2023 Spring Technical Meeting
,
Edmonton, AB, Canada
,
May 15–18
, pp.
1
4
.
3.
Rashwan
,
S. S.
,
Dincer
,
I.
, and
Mohany
,
A.
,
2021
, “
A Journey of Wastewater to Clean Hydrogen: A Perspective
,”
Int. J. Energy Res.
,
45
(
5
), pp.
6475
6482
.
4.
Burra
,
K. R. G.
,
Sahin
,
M.
,
Zheng
,
Y.
, and
Gupta
,
A. K.
,
2024
, “
Near-Critical CO2-Assisted Liquefaction-Extraction of Biomass and Wastes to Fuels and Value-Added Products
,”
ASME J. Energy Resour. Technol.
,
146
(
1
), p.
011801
.
5.
Burra
,
K. R. G.
,
Hernández
,
I. F.
,
Castaldi
,
M. J.
,
Goff
,
S.
, and
Gupta
,
A. K.
,
2023
, “
Effect of Gypsum Waste Inclusion on Gasification of Municipal Solid Waste
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
021701
.
6.
Rashwan
,
S. S.
,
Moreau
,
S.
, and
Boulet
,
M.
,
2024
, “
Navigating the Depths of Refuse-Derived Fuel in Canada: From Heterogeneity to Insightful Analysis
,”
Energy Sources, Part A
,
1
, pp.
1
20
.
7.
Giraud
,
R. J.
,
Taylor
,
P. H.
, and
Huang
,
C. P.
,
2021
, “
Combustion Operating Conditions for Municipal Waste-to-Energy Facilities in the U.S
,”
Waste Manage.
,
132
(
1
), pp.
124
132
.
8.
Belgiorno
,
V.
,
De Feo
,
G.
,
Della Rocca
,
C.
, and
Napoli
,
R. M. A.
,
2003
, “
Energy From Gasification of Solid Wastes
,”
Waste Manage.
,
23
(
1
), pp.
1
15
.
9.
Rashwan
,
S. S.
,
Ibrahim
,
A. H.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Experimental Investigation of Partially Premixed Methane–Air and Methane–Oxygen Flames Stabilized Over a Perforated-Plate Burner
,”
Appl. Energy
,
169
(
1
), pp.
126
137
.
10.
Rashwan
,
S. S.
,
Abdelkader
,
B.
,
Abdalmonem
,
A.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Ibrahim
,
A. H.
,
2022
, “
Experimental and Statistical ANOVA Analysis on Combustion Stability of CH4/O2/CO2 in a Partially Premixed Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062301
.
11.
Kerdsuwan
,
S.
,
Laohalidanond
,
K.
, and
Gupta Ashwani
,
K.
,
2021
, “
Upgrading Refuse-Derived Fuel Properties From Reclaimed Landfill Using Torrefaction
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
021302
.
12.
Laohalidanond
,
K.
,
Kerdsuwan
,
S.
,
Burra
,
K. R. G.
,
Li
,
J.
, and
Gupta
,
A. K.
,
2021
, “
Syngas Generation From Landfills Derived Torrefied Refuse Fuel Using a Downdraft Gasifier
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052102
.
13.
Sprenger
,
C. J.
,
Tabil
,
L. G.
,
Soleimani
,
M.
,
Agnew
,
J.
, and
Harrison
,
A.
,
2018
, “
Pelletization of Refuse-Derived Fuel Fluff to Produce High Quality Feedstock
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042003
.
14.
Cimpan
,
C.
,
Maul
,
A.
,
Jansen
,
M.
,
Pretz
,
T.
, and
Wenzel
,
H.
,
2015
, “
Central Sorting and Recovery of MSW Recyclable Materials: A Review of Technological State-of-the-Art, Cases, Practice and Implications for Materials Recycling
,”
J. Environ. Manage.
,
156
(
1
), pp.
181
199
.
15.
Velis
,
C. A.
,
Longhurst
,
P. J.
,
Drew
,
G. H.
,
Smith
,
R.
, and
Pollard
,
S. J. T.
,
2010
, “
Production and Quality Assurance of Solid Recovered Fuels Using Mechanical-Biological Treatment (MBT) of Waste: A Comprehensive Assessment
,”
Crit. Rev. Environ. Sci. Technol.
,
40
(
12
), pp.
979
1105
.
16.
Flamme
,
S.
, and
Geiping
,
J.
,
2012
, “
Quality Standards and Requirements for Solid Recovered Fuels: A Review
,”
Waste Manage. Res.
,
30
(
4
), pp.
335
353
.
17.
Zhou
,
C.
,
Zhang
,
Q.
,
Arnold
,
L.
,
Yang
,
W.
, and
Blasiak
,
W.
,
2013
, “
A Study of the Pyrolysis Behaviors of Pelletized Recovered Municipal Solid Waste Fuels
,”
Appl. Energy
,
107
(
2
), pp.
173
182
.
18.
Nizami
,
A. S.
,
Shahzad
,
K.
,
Rehan
,
M.
,
Ouda
,
O. K. M.
,
Khan
,
M. Z.
,
Ismail
,
I. M. I.
,
Almeelbi
,
T.
,
Basahi
,
J. M.
, and
Demirbas
,
A.
,
2017
, “
Developing Waste Biorefinery in Makkah: A Way Forward to Convert Urban Waste Into Renewable Energy
,”
Appl. Energy
,
186
, pp.
189
196
.
19.
Aboulkas
,
A.
,
El Harfi
,
K.
, and
El Bouadili
,
A.
,
2008
, “
Pyrolysis of Olive Residue/Low Density Polyethylene Mixture: Part I. Thermogravimetric Kinetics
,”
Ranliao Huaxue Xuebao/J. Fuel Chem. Technol.
,
36
(
6
), pp.
672
678
.
20.
Kannan
,
P.
,
Ibrahim
,
S.
,
Reddy
,
K. S. K.
,
Al Shoaib
,
A.
, and
Srinivasakannan
,
C.
,
2014
, “
A Comparative Analysis of the Kinetic Experiments in Polyethylene Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
024001
.
21.
Dubdub
,
I.
, and
Al-Yaari
,
M.
,
2020
, “
Pyrolysis of Low Density Polyethylene: Kinetic Study Using TGA Data and ANN Prediction
,”
Polymers
,
12
(
4
), p.
891
.
22.
Zhang
,
R.
, and
Zhu
,
Z.
,
2021
, “
Microwave Assisted Hydrothermal Conversion of Waste Cardboard
,”
Process Saf. Environ. Prot.
,
156
(
1
), pp.
209
218
.
23.
Agarwal
,
G.
,
Liu
,
G.
, and
Lattimer
,
B.
,
2014
, “
Pyrolysis and Oxidation of Cardboard
,”
Fire Saf. Sci.
,
11
(
3
), pp.
124
137
.
24.
Yin
,
Y.
,
Yang
,
B.
,
Yin
,
J.
,
Tian
,
H.
,
Zhang
,
W.
,
Cheng
,
S.
,
Hu
,
Z.
, and
Xu
,
H.
,
2020
, “
Kinetic Analysis of Co-Firing of Corn Stalk and Paper Sludge Using Model-Fitting and Model-Free Methods
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042301
.
25.
Kumar
,
R.
,
Sharma
,
V.
,
Verma
,
N.
,
Diwan
,
P. K.
,
Kumar
,
V.
, and
Kumar
,
V.
,
2019
, “
Analysis of Writing/Printing Paper via Thermogravimetric Analysis: Application in Forensic Science
,”
Aust. J. Forensic Sci.
,
51
(
1
), pp.
22
39
.
26.
Fang
,
S.
,
Yu
,
Z.
,
Lin
,
Y.
,
Hu
,
S.
,
Liao
,
Y.
, and
Ma
,
X.
,
2015
, “
Thermogravimetric Analysis of the Co-Pyrolysis of Paper Sludge and Municipal Solid Waste
,”
Energy Convers. Manage.
,
101
(
3
), pp.
626
631
.
27.
Al-Moftah
,
A. M. S. H.
,
Marsh
,
R.
, and
Steer
,
J.
,
2021
, “
Thermal Decomposition Kinetic Study of Non-Recyclable Paper and Plastic Waste by Thermogravimetric Analysis
,”
ChemEngineering
,
5
(
3
), p.
54
.
28.
Fang
,
S.
,
Lin
,
Y.
,
Lin
,
Y.
,
Chen
,
S.
,
Shen
,
X.
,
Zhong
,
T.
,
Ding
,
L.
, and
Ma
,
X.
,
2020
, “
Influence of Ultrasonic Pretreatment on the Co-Pyrolysis Characteristics and Kinetic Parameters of Municipal Solid Waste and Paper Mill Sludge
,”
Energy
,
190
(
3
), p.
116310
.
29.
Kuspangaliyeva
,
B.
,
Suleimenova
,
B.
,
Shah
,
D.
, and
Sarbassov
,
Y.
,
2021
, “
Thermogravimetric Study of Refuse Derived Fuel Produced From Municipal Solid Waste of Kazakhstan
,”
Appl. Sci.
,
11
(
3
), pp.
1
13
.
30.
Attia
,
N. F.
,
Soliman
,
M. H.
, and
El-Sakka
,
S. S.
,
2020
, “
Facile Route for Synthesis of Novel Flame Retardant, Reinforcement and Antibacterial Textile Fabrics Coatings
,”
Coatings
,
10
(
6
), pp.
1
12
.
31.
Sùrum
,
L.
,
Grùnli
,
M. G.
, and
Hustad
,
J. E.
,
2001
, “
Pyrolysis Characteristics and Kinetics of Municipal Solid Wastes
,”
Fuel
,
80
(
9
), pp.
1217
1227
.
32.
Sukarni
,
S.
,
2016
, “
Exploring the Potential of Municipal Solid Waste (MSW) as Solid Fuel for Energy Generation: Case Study in the Malang City, Indonesia
,”
AIP Conference Proceedings
,
East Java, Indonesia
,
Oct. 7–8
, pp.
1
7
.
33.
Yuan
,
H.
,
Wang
,
Y.
,
Kobayashi
,
N.
,
Zhao
,
D.
, and
Xing
,
S.
,
2015
, “
Study of Fuel Properties of Torrefied Municipal Solid Waste
,”
Energy Fuels
,
29
(
8
), pp.
4976
4980
.
34.
Nisar
,
J.
,
Ali
,
M.
, and
Awan
,
A.
,
2011
, “
Catalytic Thermal Decomposition of Polyethylene by Pyrolysis Gas Chromatography
,”
J. Chil. Chem. Soc.
,
56
(
2
), pp.
653
655
.
35.
Salaudeen
,
S. A.
,
Al-Salem
,
S. M.
,
Sharma
,
S.
, and
Dutta
,
A.
,
2021
, “
Pyrolysis of High-Density Polyethylene in a Fluidized Bed Reactor: Pyro-Wax and Gas Analysis
,”
Ind. Eng. Chem. Res.
,
60
(
50)
, pp.
18283
18292
.
36.
Dhungana
,
A.
,
Basu
,
P.
, and
Dutta
,
A.
,
2012
, “
Effects of Reactor Design on the Torrefaction of Biomass
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041801
.
37.
Ballice
,
L.
,
Yüksel
,
M.
,
Saǧlam
,
M.
,
Reimert
,
R.
, and
Schulz
,
H.
,
1998
, “
Classification of Volatile Products Evolved During Temperature-Programmed Co-Pyrolysis of Turkish Oil Shales With Low Density Polyethylene
,”
Fuel
,
77
(
13
), pp.
1431
1441
.
38.
Zattini
,
G.
,
Leonardi
,
C.
,
Mazzocchetti
,
L.
,
Cavazzoni
,
M.
,
Montanari
,
I.
,
Tosi
,
C.
,
Benelli
,
T.
, and
Giorgini
,
L.
,
2017
, “
Pyrolysis of Low-Density Polyethylene
,”
Smart Innovation, Systems and Technologies
,
Bologna, Italy
,
Apr. 26
, pp.
480
490
.
39.
Rashwan
,
S. S.
,
2018
, “
The Effect of Swirl Number and Oxidizer Composition on Combustion Characteristics of Non-Premixed Methane Flames
,”
Energy Fuels
,
32
(
2
), pp.
2517
2526
.
40.
Rashwan
,
S. S.
,
Mohany
,
A.
, and
Dincer
,
I.
,
2020
, “
Investigation of Self-Induced Thermoacoustic Instabilities in Gas Turbine Combustors
,”
Energy
,
190
(
1
), p.
116362
.
41.
Abdelhafez
,
A.
,
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2018
, “
Stability Map and Shape of Premixed CH4/O2/CO2 Flames in a Model Gas-Turbine Combustor
,”
Appl. Energy
,
215
, pp.
63
74
.
42.
Habib
,
M. A.
,
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Abdelhafez
,
A.
,
2017
, “
Stability Maps of Non-Premixed Methane Flames in Different Oxidizing Environments of a Gas Turbine Model Combustor
,”
Appl. Energy
,
189
(
1
), pp.
177
186
.
43.
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Review on Premixed Combustion Technology: Stability, Emission Control, Applications, and Numerical Case Study
,”
Energy Fuels
,
30
(
12
), pp.
9981
10014
.
44.
Nemitallah
,
M. A.
,
Rashwan
,
S. S.
,
Mansir
,
I. B.
,
Abdelhafez
,
A. A.
, and
Habib
,
M. A.
,
2018
, “
Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines
,”
Energy Fuels
,
32
(
2
), pp.
979
1004
.
You do not currently have access to this content.