Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper is devoted to the study of the influence of chemical mechanisms, turbulence models, and gas radiative properties models on the characteristics of a turbulent diffusion CO/H2/N2−air flame, i.e., the so-called syngas flame in a Favre-averaged Navier–Stokes (FANS) environment. For this purpose, a transient FANS solver for combustion is used. The simulations are carried out using three distinct turbulence models, i.e., the standard kε, the renormalization group (RNG) kε, and the shear stress transport models. The turbulence–chemistry interaction is modeled using the partially stirred reaction model. The chemical mechanisms used in the present study are: (i) a compact skeletal C2 mechanism, (ii) a mechanism developed by Frassoldati–Faravelli–Ranzi containing 14 species and 33 reactions, and (iii) the optimized syngas mechanism by Varga. Radiation heat transfer is handled by the P-1 method. In addition, the performances of two gas radiative properties models, i.e., the gray mean gas and the weighted-sum-of-gray-gases (WSGG) models, are assessed in radiative heat transfer modeling of the syngas flame. The predicted results reveal that the combination of the RNG turbulence model and the C2 skeletal mechanism shows the best agreement with measurements. The WSGG model used predicts results with the same level accuracy as the gray gas model in modeling of the syngas flame.

References

1.
Wender
,
I
,
1996
, “
Reactions of Synthesis Gas
,”
Fuel Process. Technol.
,
48
, pp.
189
297
.
2.
Ruiz
,
J. A.
,
Juárez
,
M. C.
, and
Morales
,
M. P.
,
2013
, “
Biomass Gasification for Electricity Generation: Review of Current Technology Barriers
,”
Renew. Sustain. Energy
,
18
, pp.
174
183
.
3.
Gonzalez-Juez
,
E. D.
,
2017
, “
Advances and Challenges in Modeling High-Speed Turbulent Combustion in Propulsion Systems
,”
Prog. Energy Combust. Sci.
,
60
, pp.
26
67
.
4.
Noume
,
H. C.
,
Bomba
,
V.
,
Obounou
,
M.
,
Fouda
,
H. E.
, and
Sapnken
,
F. E.
,
2021
, “
Computational Fluid Dynamics Study of a Nonpremixed Turbulent Flame Using OAM: Effect of Chemical Mechanisms and Turbulence Models
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112303
.
5.
Kohse-Höinghaus
,
K.
,
2021
, “
Combustion in the Future: The Importance of Chemistry
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
1
56
.
6.
Liu
,
B.
,
Wang
,
C.
,
Zhang
,
Y.
,
Si
,
M.
, and
Luo
,
G.
,
2024
, “
Effect of CH4 Addition on Soot Formation in C2H4 Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
146
(
1
), p.
012301
.
7.
Gnentedem
,
C.
,
Awakem
,
D.
,
Obounou
,
M.
,
Ekobena Fouda
,
H. P.
, and
Njomo
,
D.
,
2020
, “
Application of a Reduced Mechanism by Computational Singular Perturbation Method to the Calculation of the Ignition Delays of a Turbulence Diffusion Flame CH4/H2/N2
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062302
.
8.
Marzouk
,
O. A.
, and
Huckaby
,
E. D.
,
2010
, “
A Comparative Study of Eight Finite-Rate Chemistry Kinetics for CO/H2 Combustion
,”
Eng. Appl. Comput. Fluid Mech.
,
4
(
3
), pp.
331
356
.
9.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
.
10.
Lysenko
,
D. A.
,
Ertesvag
,
I. S.
, and
Rian
,
K. E.
,
2014
,
Numerical Simulation of Non-Premixed Turbulent Combustion Using the Eddy Dissipation Concept and Comparing With the Steady Laminar Flamelet Model
, Vol. 93,
Springer
.
11.
Smith
,
Gregory P.
,
Golden
,
David M.
,
Frenklach
,
Michael
,
Moriarty
,
Nigel W.
,
Eiteneer
,
Boris
,
Goldenberg
,
Mikhail
,
Bowman
,
C. Thomas
, et al.,
2003
, http://www.me.berkeley.edu/gri_mech/.
12.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Ferraris
,
G. B.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2007
, “
The Ignition, Combustion and Flame Structure of Carbon Monoxide/Hydrogen Mixtures. Note 2: Fluid Dynamics and Kinetic Aspects of Syngas Combustion
,”
Int. J. Hydrogen Energy
,
32
, pp.
3486
3500
.
13.
Zhou
,
X.
,
Jiang
,
X.
, and
Martinez
,
D. M.
,
2016
, “
The Effects of Chemical Kinetic Mechanisms on Large Eddy Simulation (LES) of a Nonpremixed Hydrogen Jet Flame
,”
Int. J. Hydrogen Energy
,
41
(
26
), pp.
11427
11440
.
14.
Davis
,
S.
,
Joshi
,
A.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
,
2005
, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1283
1292
.
15.
Hong
,
Z.
,
Davidson
,
D.
, and
Hanson
,
R.
,
2011
, “
An Improved H 2/O 2 Mechanism Based on Recent Shock Tube/laser Absorption Measurements
,”
Combust. Flame
,
158
(
4
), pp.
633
644
.
16.
Ó Conaire
,
M.
,
Curran
,
H.
,
Simmie
,
J.
,
Pitz
,
W.
, and
Westbrook
,
C.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.
17.
Boivin
,
P.
,
Jiménez
,
C.
,
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2011
, “
An Explicit Reduced Mechanism for H2–Air Combustion
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
517
523
.
18.
Ciottoli
,
P. P.
,
Lee
,
B. J.
,
Lapenna
,
P. E.
,
Galassi
,
R. M.
,
Hernández-Pérez
,
F. E.
,
Martelli
,
E.
,
Valorani
,
M.
, and
Im
,
H. G.
,
2019
, “
Large Eddy Simulation on the Effects of Pressure on Syngas/Air Turbulent Nonpremixed Jet Flames
,”
Combust. Sci. Technol.
,
192
(
10
), pp.
1963
1996
.
19.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire Jr
,
J. J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
(
3
), pp.
109
136
.
20.
He
,
D.
,
Yu
,
Y.
,
Kuang
,
Y.
, and
Wang
,
C.
,
2021
, “
Model Comparisons of Flow and Chemical Kinetic Mechanisms for Methane-Air Combustion for Engineering Applications
,”
Appl. Sci.
,
11
(
9
), p.
4107
.
21.
Kazakov
,
A.
, and
Frenklach
,
M.
,
1998
, Reduced Mechanisms Based on Gri-Mech 1.2, http://www.me.berkeley.edu/drm, Accessed on April 14, 2023.
22.
Yang
,
B.
, and
Pope
,
S.
,
1998
, “
An Investigation of the Accuracy of Manifold Methods and Splitting Schemes in the Computational Implementation of Combustion Chemistry
,”
Combust. Flame
,
112
(
1–2
), pp.
16
32
.
23.
Khodabandeh
,
E.
,
Moghadasi
,
H.
,
Pour
,
M. S.
,
Ersson
,
M.
,
Jönsson
,
P. G.
,
Rosen
,
M. A.
, and
Rahbari
,
A.
,
2020
, “
CFD Study of Non-Premixed Swirling Burners: Effect of Turbulence Models
,”
Chin. J. Chem. Eng.
,
28
(
4
), pp.
1029
1038
.
24.
Sadeghi
,
H.
,
Hostikka
,
S.
,
Fraga
,
G. C.
, and
Bordbar
,
H.
,
2021
, “
Weighted-Sum-of-Gray-Gases Models for Non-Gray Thermal Radiation of Hydrocarbon Fuel Vapors, CH4, CO and Soot
,”
Fire Saf. J.
,
125
, p.
103420
.
25.
Liua
,
F.
,
Becker
,
H.
, and
Bindar
,
Y.
,
1998
, “
A Comparative Study of Radiative Heat Transfer Modelling in Gas-Fired Furnaces Using the Simple Grey Gas and the Weighted-Sum-of-Grey-Gases Models
,”
Int. J. Heat Mass Transfer
,
41
(
22
), pp.
3357
3371
.
26.
OpenFOAM
,
2018
, Openfam, https://www.openfoam.org/version/6, Accessed on May 21, 2023.
27.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
28.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
29.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S.
,
Suzen
,
Y.
,
Huang
,
P.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables-Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
30.
Barlow
,
R.
,
Fiechtner
,
G.
,
Carter
,
C.
, and
Chen
,
J.-Y.
,
2000
, “
Experiments on the Scalar Structure of Turbulent CO/H2/N2 Jet Flames
,”
Combust. Flame
,
120
(
4
), pp.
549
569
.
31.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-In Pre-and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
32.
Chopkap Noume
,
H.
,
Bomba
,
V.
, and
Obounou
,
M.
,
2020
, “
Numerical Investigation of a Turbulent Jet Flame With a Compact Skeletal Mechanism
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032206
.
33.
Awakem
,
D.
,
Obounou
,
M.
, and
Noume
,
H. C.
,
2019
, “
Application of the Computational Singular Perturbation Method to a Turbulent Diffusion CH4/H2/N2 Flame Using Openfoam
,”
ASME J. Energy. Resour. Technol.
,
141
(
6
), p.
042201
.
34.
Stéphane
,
K. L.
,
Charles
,
C. M.
, and
Paul
,
P.
,
2023
, “
Numerical Simulation of Biogas Combustion by Using a Finite Volume Based-Multispecies Transport Model
,”
ASME J. Energy. Resour. Technol.
,
145
(
2
), p.
022304
.
35.
Gaikwad
,
P.
, and
Sreedhara
,
S.
,
2019
, “
Openfoam Based Conditional Moment Closure (CMC) Model for Solving Non-Premixed Turbulent Combustion: Integration and Validation
,”
Comput. Fluids
,
190
, pp.
362
373
.
36.
Kassem
,
H. I.
,
Saqr
,
K. M.
,
Sies
,
M. M.
, and
Wahid
,
M. A.
,
2012
, “
Integrating a Simplified PN Radiation Model With Edmfoam1. 5: Model Assessment and Validation
,”
Int. Communicat. Heat Mass Transfer
,
39
(
5
), pp.
697
704
.
37.
Cokljat
,
D.
,
Slack
,
M.
,
Vasquez
,
S.
,
Bakker
,
A.
, and
Montante
,
G.
,
2006
, “
Reynolds-Stress Model for Eulerian Multiphase
,”
Prog. Comput. Fluid Dyn. Int. J.
,
6
(
1
), pp.
168
178
.
38.
Chomiak
,
J.
, and
Karlsson
,
A.
,
1996
, “
Flame Liftoff in Diesel Sprays
,”
Symposium (International) on Combustion
, Vol.
26
,
Elsevier
, pp.
2557
2564
.
39.
Nordin
,
P.
,
2001
, “
Complex Chemistry Modeling of Diesel Spray Combustion
,” pp.
1
55
.
40.
Magnussen
,
B. F.
,
1981
, On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow.
41.
Golovitchev
,
V.
,
Nordin
,
N.
,
Jarnicki
,
R.
, and
Chomiak
,
J.
,
2000
, “
3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model
,”
SAE Technical Papers
,
06
.
42.
Cheng
,
P.
,
1966
, “
Dynamics of a Radiating Gas With Application to Flow Over a Wavy Wall.
,”
AIAA J.
,
4
(
2
), pp.
238
245
.
43.
Smith
,
T.
,
Shen
,
Z.
, and
Friedman
,
J.
,
1982
, “Evaluation of Coefficients for the Weighted Sum of Gray Gases Model’.
44.
Yin
,
C.
,
2010
, “
RANS Simulation of Oxy-Natural Gas Combustion
,” Ph.D. thesis, Master Thesis, Board of Studies in Energy,
Alborg University
,
Alborg, Denmark
.
45.
Yin
,
C.
,
2017
, “
Prediction of Air-Fuel and Oxy-Fuel Combustion Through a Generic Gas Radiation Property Model
,”
Appl. Energy
,
189
, pp.
449
459
.
46.
Yin
,
C.
,
Rosendahl
,
L. A.
, and
Kær
,
S. K.
,
2011
, “
Chemistry and Radiation in Oxy-Fuel Combustion: A Computational Fluid Dynamics Modeling Study
,”
Fuel
,
90
(
7
), pp.
2519
2529
.
47.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
48.
Bomba
,
V. N.
,
2017
, “
Chemistry Reduction for Laminar Oxyfuel Combustion
,” Doctoral thesis,
Ruhr-Universität Bochum
,
Germany
.
49.
Lu
,
T.
, and
Law
,
C. K.
,
2008
, “
Strategies for Mechanism Reduction for Large Hydrocarbons: N-Heptane
,”
Combust. Flame
,
154
(
1–2
), pp.
153
163
.
50.
Lam
,
S.-H.
, and
Goussis
,
D. A.
,
1989
, “
Understanding Complex Chemical Kinetics With Computational Singular Perturbation
,” Elsevier,
22
, pp.
931
941
.
51.
Varga
,
T.
,
Olm
,
C.
,
Nagy
,
T.
,
Zsély
,
I.
,
Valkó
,
P. R.
,
Curran
,
H.
, and
Turányi
,
T.
,
2016
, “
Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach: Optimization of a Joint Hydrogen and Syngas Combustion Mechanism
,”
Int. J. Chem. Kinet.
,
48
(
5
).
52.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C.-J.
,
Herzler
,
J.
,
Naumann
,
C.
,
Griebel
,
P.
,
Mathieu
,
O.
,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.
53.
Amdahl
,
G. M.
,
2007
, “
Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities
,”
IEEE Solid-State Circ. Soc. New.
,
12
(
3
), pp.
19
20
.
54.
Ebrahimi Fordoei
,
E.
, and
Mazaheri
,
K.
,
2019
, “
Numerical Study of Chemical Kinetics and Radiation Heat Transfer Characteristics on the Temperature Distribution in the Oxy-Fuel Combustion
,”
Heat Mass Transfer
,
55
, pp.
2025
2036
.
55.
Yin
,
C.
,
2010
, “
New Weighted Sum of Gray Gases Model Applicable to Computational Fluid Dynamics (CFD) Modeling of Oxy-Fuel Combustion: Derivation, Validation, and Implementation
,”
Energy Fuels
,
24
(
12
), pp.
6275
6282
.
56.
El Abbassi
,
M.
,
Fikri
,
D. R. A.
, and
Lahaye
,
D. J. P.
,
2018
, “
Non-Premixed Combustion in Rotary Kilns Using OpenFOAM: The Effect of Conjugate Heat Transfer and External Radiative Heat Loss on the Reacting Flow and the Wall
,” THMT-18.
Proceedings of the Ninth International Symposium on Turbulence Heat and Mass Transfer
.
Begel House Inc
.
57.
Lahaye
,
D.
, and
Juretić
,
F.
,
2022
, “
Modelling a Turbulent Non-Premixed Combustion in a Full-Scale Rotary Cement Kiln Using ReactingFoam
,”
Energies
,
15
(
24
), p.
9618
.
You do not currently have access to this content.