Abstract

This study aims to advance understanding of in-cylinder combustion processes in medium-speed diesel engines, which are extensively employed in heavy-duty applications where electrification proves inefficient yet remains insufficiently examined in the literature. By modeling a four-stroke engine with dimensions of 210 mm bore and 310 mm stroke, operating at 900 rpm under full load, this research identifies distinct combustion characteristics that differentiate medium-speed engines from their high-speed counterparts. Key findings illustrate that super turbocharging in medium-speed engines enhances the combustion of the fuel–air mixture under elevated temperatures and pressures. Moreover, an increased stroke length promotes gas velocity and turbulence, facilitating fuel atomization and mixing. Notably, rapid fuel ignition occurs near the nozzle due to the high temperature of compressed air, reducing the ignition delay. As a result, the premixed combustion stage nearly disappears, with diffusion combustion dominating, especially pronounced with long-duration injection, a characteristic of medium-speed engines. The study also reveals a more uniform but elevated distribution of nitrogen oxide emissions in medium-speed engines, attributed to prolonged high-temperature conditions that both facilitate their formation. Early stages of diffusion combustion show high concentrations of incomplete combustion products. However, as the combustion process progresses, the conditions favor the complete oxidation of these products at high temperatures, resulting in decreased carbon-based pollutions. In addition, the larger combustion chamber and enhanced turbulence characteristic of medium-speed engines support efficient fuel and air mixing without necessitating the swirl effect required by high-speed engines, diminishing the dependence on wall impingement dynamics for air utilization. Consequently, efficiency optimization strategies for medium-speed engines, emphasizing adjustable injection parameters, encounter fewer constraints than those inherent to the spatial limitations of high-speed engines.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Sadeghinezhad
,
E.
,
Kazi
,
S. N.
,
Badarudin
,
A.
,
Oon
,
C. S.
,
Zubir
,
M. N. M.
, and
Mehrali
,
M.
,
2013
, “
A Comprehensive Review of Bio-Diesel as Alternative Fuel for Compression Ignition Engines
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
410
424
.
2.
Bassiony
,
M. A.
,
Sadiq
,
A. M.
,
Gergawy
,
M. T.
,
Ahmed
,
S. F.
, and
Ghani
,
S. A.
,
2018
, “
Investigating the Effect of Utilizing New Induction Manifold Designs on the Combustion Characteristics and Emissions of a Direct Injection Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122202
.
3.
Liu
,
Z.
, and
Liu
,
J.
,
2021
, “
Experimental Investigation of Combustion Characteristics of a Single Cylinder Diesel Engine at Altitude
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102306
.
4.
Hossain
,
M. J.
,
Chowdhury
,
J. I.
,
Balta-Ozkan
,
N.
,
Asfand
,
F.
,
Saadon
,
S.
, and
Imran
,
M.
,
2021
, “
Design Optimization of Supercritical Carbon Dioxide (s-CO2) Cycles for Waste Heat Recovery From Marine Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120901
.
5.
Lin
,
C. Y.
,
2013
, “
Strategies for Promoting Biodiesel Use in Marine Vessels
,”
Mar. Policy
,
40
, pp.
84
90
.
6.
He
,
F.
,
Feng
,
X.
,
Pan
,
Z.
,
Zhou
,
G.
, and
Lu
,
Y.
,
2024
, “
Research and Optimization on the Exhaust Flow Characteristics Based on Energy-Splitting Method of the Low-Speed Marine Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
146
(
1
), p.
011701
.
7.
Ni
,
P.
,
Wang
,
X.
, and
Li
,
H.
,
2020
, “
A Review on Regulations, Current Status, Effects and Reduction Strategies of Emissions for Marine Diesel Engines
,”
Fuel
,
279
, p.
118477
.
8.
Palocz-Andresen
,
M.
,
2012
,
Decreasing Fuel Consumption and Exhaust Gas Emissions in Transportation: Sensing, Control and Reduction of Emissions
,
Springer Science & Business Media
,
Hamburg, Germany
.
9.
Liu
,
Z.
, and
Liu
,
J.
,
2022
, “
Investigation of the Effect of Altitude on In-Cylinder Heat Transfer in Heavy-Duty Diesel Engines Based on an Empirical Model
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112303
.
10.
Sapra
,
H.
,
Godjevac
,
M.
,
Visser
,
K.
,
Stapersma
,
D.
, and
Dijkstra
,
C.
,
2017
, “
Experimental and Simulation-Based Investigations of Marine Diesel Engine Performance Against Static Back Pressure
,”
Appl. Energy
,
204
, pp.
78
92
.
11.
Basurko
,
O. C.
, and
Uriondo
,
Z.
,
2015
, “
Condition-Based Maintenance for Medium Speed Diesel Engines Used in Vessels in Operation
,”
Appl. Therm. Eng.
,
80
, pp.
404
412
.
12.
Zamiatina
,
N.
,
2016
, “
Comparative Overview of Marine Fuel Quality on Diesel Engine Operation
,”
Procedia Eng.
,
134
, pp.
157
164
.
13.
Xia
,
J.
,
Huang
,
Z.
,
Zhang
,
L.
,
Zhang
,
Q.
,
Zheng
,
L.
,
Liu
,
R.
,
Ju
,
D.
, and
Lu
,
X.
,
2020
, “
Experimental Comparisons on Injection and Atomization Characteristics of Diesel and Its Six-Component Surrogate Under Different Critical Conditions of Marine Engine
,”
Energy Convers. Manage.
,
205
, p.
112397
.
14.
Lion
,
S.
,
Vlaskos
,
I.
, and
Taccani
,
R.
,
2020
, “
A Review of Emissions Reduction Technologies for Low and Medium Speed Marine Diesel Engines and Their Potential for Waste Heat Recovery
,”
Energy Convers. Manage.
,
207
, p.
112553
.
15.
Karmann
,
S.
,
Eicheldinger
,
S.
,
Prager
,
M.
,
Jaensch
,
M.
, and
Wachtmeister
,
G.
,
2022
, “
Experimental Comparison Between an Optical and an All-Metal Large Bore Engine
,”
Int. J. Engine Res.
,
24
(
3
), pp.
1223
1238
.
16.
Yao
,
Z.
,
Qian
,
Z.
,
Li
,
R.
, and
Hu
,
E.
,
2019
, “
Energy Efficiency Analysis of Marine High-Powered Medium-Speed Diesel Engine Base on Energy Balance and Exergy
,”
Energy
,
176
, pp.
991
1006
.
17.
Bilousov
,
I.
,
Bulgakov
,
M.
, and
Savchuk
,
V.
,
2020
,
Modern Marine Internal Combustion Engines
,
Springer International Publishing
,
Berlin/Heidelberg, Germany
.
18.
Kumar
,
K.
,
Gaur
,
R. R.
,
Garg
,
R. D.
, and
Babu
,
M. G.
,
1984
, “
A Thermodynamic Simulation Model for a Four Stroke Medium Speed Diesel Engine
,” SAE Technical Paper, 840516.
19.
Adler
,
J.
, and
Bandhauer
,
T.
,
2017
, “
Performance of a Diesel Engine at High Coolant Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062203
.
20.
Sarvi
,
A.
,
Fogelholm
,
C. J.
, and
Zevenhoven
,
R.
,
2008
, “
Emissions From Large-Scale Medium-Speed Diesel Engines: 2. Influence of Fuel Type and Operating Mode
,”
Fuel Process. Technol.
,
89
(
5
), pp.
520
527
.
21.
Lyyränen
,
J.
,
Jokiniemi
,
J.
,
Kauppinen
,
E. I.
, and
Joutsensaari
,
J.
,
1999
, “
Aerosol Characterisation in Medium-Speed Diesel Engines Operating With Heavy Fuel Oils
,”
J. Aerosol Sci.
,
30
(
6
), pp.
771
784
.
22.
Sonawane
,
U.
, and
Agarwal
,
A. K.
,
2022
, “
Computational Investigations of Spray Atomization and Evaporation Under Cold-Start Conditions of a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112305
.
23.
Yousefi
,
A.
, and
Birouk
,
M.
,
2017
, “
An Investigation of Multi-Injection Strategies for a Dual-Fuel Pilot Diesel Ignition Engine at Low Load
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012201
.
24.
Karami
,
R.
,
Rasul
,
M. G.
, and
Khan
,
M. M. K.
,
2023
, “
An Empirical and Computational Fluid Dynamics Analysis of Combustion Performance of a Diesel Engine Fueled With Tomato Seed Oil Biodiesel
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
041302
.
25.
He
,
S.
,
Du
,
B. G.
,
Feng
,
L. Y.
,
Fu
,
Y.
,
Cui
,
J. C.
, and
Long
,
W. Q.
,
2015
, “
A Numerical Study on Combustion and Emission Characteristics of a Medium-Speed Diesel Engine Using in-Cylinder Cleaning Technologies
,”
Energies
,
8
(
5
), pp.
4118
4137
.
26.
Taskinen
,
P.
,
Von Hollen
,
P.
,
Karvinen
,
R.
,
Liljenfeldt
,
G.
, and
Salminen
,
H. J.
,
1998
, “
Simulation of Combustion, Soot and
NOx
-Emissions in a Large Medium Speed Diesel Engine
,” SAE Technical Paper No. 981449.
27.
Xiao
,
M.
, and
Jiao
,
T.
,
2013
, “
Optimization of Valve Timing and cam Profile of 6L21 /31 Medium Speed Diesel Engine
,”
Internal Combusti. Engine Powerplant
,
30
(
6
), pp.
26
31
.
28.
Feng
,
M.
,
2014
, “
Simulation Research on Combustion Process in a LNG-Diesel Dual-Fuel Marine Engine
,”
M.S. thesis
,
Jiangsu University of Science and Technology
,
Zhenjiang, Jiangsu, China
.
29.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
30.
Reaction Design
,
2016
,
ANSYS Forte 17.2
,
ANSYS, Inc.
,
San Diego, CA
.
31.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
32.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.
33.
Abani
,
N.
,
Kokjohn
,
S.
,
Park
,
S. W.
,
Bergin
,
M.
,
Munnannur
,
A.
,
Ning
,
W.
,
Sun
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations
,” SAE Technical Paper No. 2008-01-0970.
34.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,” SAE Technical Paper No. 872089.
35.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.
36.
Han
,
Z.
,
Xu
,
Z.
, and
Trigui
,
N.
,
2000
, “
Spray/Wall Interaction Models for Multidimensional Engine Simulation
,”
Int. J. Engine Res.
,
1
(
1
), pp.
127
146
.
37.
Wang
,
M.
,
Gao
,
S.
, and
Lee
,
C. F.
,
2017
, “
An Efficient and Unified Combustion Model for CFD of SI and CI Engine Operation
,” SAE Technical Paper No. 2017-01-0572.
38.
Kong
,
S. C.
, and
Reitz
,
R. D.
,
2002
, “
Use of Detailed Chemical Kinetics to Study HCCI Engine Combustion With Consideration of Turbulent Mixing Effects
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
702
707
.
39.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.
40.
Reaction Design
,
2016
,
Model Fuel Library User Guide 17.2
,
ANSYS, Inc
.,
San Diego, CA
.
41.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines
,” SAE Technical Paper No. 760129.
42.
Liu
,
Z.
,
Zhang
,
Y.
,
Fu
,
J.
, and
Liu
,
J.
,
2022
, “
Multidimensional Computational Fluid Dynamics Combustion Process Modeling of a 6V150 Diesel Engine
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
10
), p.
101009
.
You do not currently have access to this content.