Abstract

This research addresses the environmental dynamics of wind power plants and their impact on the economy and environment. A system dynamics framework is used as a tool for model development since it accommodates relationships between complex and nonlinear variables affecting the wind power plants and their impact on the economy and environment. The scientific contribution of this research is the creation of scenario modeling that describes the interrelationships of variables and parameters affecting wind power plants and their impact. By changing the structure of the model, projections on the future of wind power plant generation can be estimated. Several scenarios being developed include adding turbines in the Sidrap and Jeneponto regencies to increase the fulfillment ratio of wind energy and scenarios to reduce CO2 emissions using solid direct air capture (S-DAC). The data and information used in this research come from the Central Statistics Agency, articles on wind energy power plants, and data from related previous studies. These models and scenarios can be applied in other regions by adjusting the parameter values of the case study model. Total wind energy depends on density, wind speed, blade cross-sectional area, and the efficiency of the Betz limit. With the addition of 25 turbines in Sidrap and 20 turbines in Jeneponto, the average fulfillment ratio is estimated to increase by around 7% due to increased production. Meanwhile, total CO2 emissions are estimated to decrease by approximately 45% due to solid direct air capture.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Sørensen
,
M. L.
,
Nystrup
,
P.
,
Bjerregård
,
M. B.
,
Møller
,
J. K.
,
Bacher
,
P.
, and
Madsen
,
H.
,
2023
, “
Recent Developments in Multivariate Wind and Solar Power Forecasting
,”
Wiley Interdiscip. Rev.: Energy Environ.
,
12
(
2
), p.
e465
.
2.
Meschede
,
H.
,
Bertheau
,
P.
,
Khalili
,
S.
, and
Breyer
,
C.
,
2022
, “
A Review of 100% Renewable Energy Scenarios on Islands
,”
Wiley Interdiscip. Rev.: Energy Environ.
,
11
(
6
), p.
e450
.
3.
Dodo
,
U. A.
, and
Ashigwuike
,
E. C.
,
2023
, “
Techno-Economic and Environmental Analysis of Utility-Scale Hybrid Renewable Energy System Integrating Waste-to-Energy Plant to Complement an Unreliable Grid Operation
,”
Energy Ecol. Environ.
,
8
(
5
), pp.
439
456
.
4.
Reyes-Belmonte
,
M. A.
,
2021
, “
The Energy and Environment Connection, Research Trends Based on a Bibliometric Analysis
,”
Energy Ecol. Environ.
,
6
(
6
), pp.
479
495
.
5.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
6.
Al Muhajir
,
F.
, and
Sinaga
,
N.
,
2021
, “
Overview of Wind Energy Utilization as a Power Plant in South Sulawesi Province Diponegoro University, Semarang Indonesia (Tinjauan Pemanfaatan Energi Bayu Sebagai Pembangkit Listrik di Provinsi Sulawesi Selatan Universitas Diponegoro, Semarang Indonesia)
,”
J. Tek.
,
15
(
1
), pp.
55
61
.
7.
Manwell
,
J.
, and
McGowan
,
J.
,
2002
,
Wind Energy Explained: Theory Design and Application
,
John Wiley & Sons
,
Chichester
.
8.
Fauzi
,
S.
,
2012
, “
Measurement of 10 KW Hummer Wind Turbine Performance at the Bayu-Diesel Hybrid Power Plant in Pidie Jaya (Pengukuran Performasi Turbin Angin Hummer 10 KW Pada Pembangkit Listrik Hibrid Bayu-Diesel di Pidie Jaya)
,”
J. Teknik Elektro.
,
2
(
2
), pp.
55
58
.
9.
Hau
,
E.
, and
Renouard
,
H.
,
2006
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
, 2nd ed.,
Springer
,
Heidelberg
.
10.
Mohan
,
M.
, and
Saha
,
U. K.
,
2024
, “
Evolving a Novel Blade Shape of a Savonius Wind Rotor Using an Optimization Technique Coupled With Numerical Simulations and Wind Tunnel Tests
,”
ASME J. Energy Resour. Technol.
,
146
(
4
), p.
041301
.
11.
Kahraman
,
G.
,
2024
, “
Modeling of Optimal Power Generation in Small Hydropower Plants
,”
ASME J. Energy Resour. Technol.
,
146
(
4
), p.
042101
.
12.
Houchati
,
M.
,
Beitelmal
,
A. H.
, and
Khraisheh
,
M.
,
2022
, “
Predictive Modeling for Rooftop Solar Energy Throughput: A Machine Learning-Based Optimization for Building Energy Demand Scheduling
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
011302
.
13.
Guo
,
Y.
, and
He
,
R.
,
2020
, “
Design, Modeling, and Test: The Hydraulic Vibration Energy Recovery System of Speed Bump
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012004
.
14.
Mutingi
,
M.
,
Mbohwa
,
C.
, and
Kommula
,
V. P.
,
2017
, “
System Dynamics Approaches to Energy Policy Modelling and Simulation
,”
Energy Procedia
,
141
(
1
), pp.
532
539
.
15.
Azar
,
A. T.
,
2012
, “
System Dynamics as a Useful Technique for Complex Systems
,”
Int. J. Ind. Syst. Eng.
,
10
(
4
), pp.
377
410
.
16.
Qudrat-Ullah
,
H.
,
2015
, “
Modelling and Simulation in Service of Energy Policy
,”
Energy Procedia
,
75
(
1
), pp.
2819
2825
.
17.
Blackwood
,
M.
,
2016
, “
Maximum Efficiency of a Wind Turbine
,”
Undergrad. J. Math. Model. One + Two
,
6
(
2
), pp.
1
10
. https://digitalcommons.usf.edu/ujmm/vol6/iss2/2
18.
PLN
,
2023
, “
Statistics PLN 2022
,” PT. Perusahaan Listrik Negara (PLN), web.pln.co.id/en/stakeholders/statistical-report
19.
Permatasari
,
D.
,
2020
, “
Wind Power Plant (PLTB), a Renewable Energy Alternative in South Sulawesi (PLTB, Alternatif Energi Terbarukan di Sulawesi Selatan)
,” DJKN Article, djkn.kemenkeu.go.id/artikel/baca/13477/PLTB-Alternatif-Energi-terbarukan-di-Sulawesi-Selatan.html, Accessed November 18, 2023
20.
Kementerian ESDM
,
2021
, “
Electricity Statistics 2008–2021 (Statistik Ketenaga Listrikan Tahun 2008–2021)
.”
21.
Lambert
,
T.
,
2006
,
Micropower System Modelling With HOMER, Dalam Integration of Alternative Sources of Energy
,
John Wiley & Sons
,
Kanada
.
22.
Prasetyo
,
A.
,
2019
, “
Study on the Potential Application and Development of Indonesian Wind Power Plants (Studi Potensi Penerapan Dan Pengembangan Pembangkit Listrik Tenaga Angin Indonesia)
,”
J. Tek.
,
1
(
1
), pp.
1
10
.
23.
Ghoneam
,
S. M.
,
Hamada
,
A. A.
, and
Sherif
,
T. S.
,
2024
, “
Fatigue-Life Estimation of Vertical-Axis Wind Turbine Composite Blades Using Modal Analysis
,”
ASME J. Energy Resour. Technol.
,
146
(
3
), p.
031301
.
24.
Sterman
,
J.
,
2000
,
Business Dynamics, Systems Thinking and Modeling for a Complex World
,
McGraw-Hill Inc.
,
Boston, MA
.
25.
Frenzel
,
A.
, and
Grupp
,
H.
,
2009
, “
Using Models of Innovation Diffusion to Forecast Market Success: A Practitioners' Guide
,”
Res. Eval.
,
18
(
1
), pp.
39
50
.
26.
Lisapaly
,
L.
,
2021
, “
An Academic Review on the Performance of the Sidrap Wind Turbine, Sulawesi—Indonesia
,”
IOP Conf. Ser. Earth Environ. Sci.
,
878
(
1
), p.
12058
.
27.
Nashar
,
M.
,
2015
, “
Analisa Kelayakan Bisnis Proyek Pembangkit Listrik Tenaga Angin (Pltb) Di Indonesia Dengan Mengunakan Software Retscreen
,”
J. Ilm. Manaj. Bisnis
,
1
(
1
), pp.
1
8
.
28.
Wang
,
X.
,
Xu
,
Z.
,
Qin
,
Y.
, and
Skare
,
M.
,
2023
, “
The Global Impact of Financial Development on Renewable Energy in a Panel Structural Vector Autoregression Analysis
,”
Sustain. Dev.
,
31
(
3
), pp.
1364
1383
.
29.
Guang-Wen
,
Z.
,
Murshed
,
M.
,
Siddik
,
A. B.
,
Alam
,
M. S.
,
Balsalobre-Lorente
,
D.
, and
Mahmood
,
H.
,
2023
, “
Achieving the Objectives of the 2030 Sustainable Development Goals Agenda: Causalities Between Economic Growth, Environmental Sustainability, Financial Development, and Renewable Energy Consumption
,”
Sustain. Dev.
,
31
(
2
), pp.
680
697
.
30.
Bayer
,
S.
,
2004
,
Systems Thinking and Modeling for a Complex World, vol. 34, no. 1
,
McGraw-Hill School Education Group
,
Massachusetts
, http://www.lavoisier.fr/notice/frJWOAR6SA23WLOO.html
31.
PennState
,
2000
, “
Wind Energy and Power Calculations
,” PennState College of Earth and Mineral Sciences, e-education.psu.edu/emsc297/node/649, Accessed March 22, 2023
32.
Dell
,
J.
, and
Klippenstein
,
M.
,
2017
, “
Wind Power Could Blow Past Hydro's Capacity Factor by 2020
,” Green Tech Media, greentechmedia.com/articles/read/wind-power-could-blow-past-hydros-capacity-factor-by-2020, Accessed March 22, 2023
33.
Sikumbang
,
I.
,
2022
, “
Indonesia Wind Power Potential & Challenges
,” Reinvest Indonesia, reinvestindonesia.com/assets/source/materials/china-2022/Bapak_Ifnaldi_Sikumbang.pdf, Accessed March 22, 2023
34.
Barlas
,
Y.
,
1989
, “
Multiple Tests for Validation of System Dynamics Type of Simulation Models
,”
Eur. J. Oper. Res.
,
42
(
1
), pp.
59
87
.
35.
Qudrat-Ullah
,
H.
,
2012
, “
On the Validation of System Dynamics Type Simulation Models
,”
Telecommun. Syst.
,
51
(
2
), pp.
159
166
.
36.
Yin
,
W.
,
Liu
,
L.
,
Zhang
,
W.
,
Li
,
M.
, and
Guo
,
Y.
,
2023
, “
Performance Improving of Wind Power Generation Systems Through Parameter Optimization and Dynamic Analysis of the Speed-Regulating Differential Transmission
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
121302
.
37.
PLN
,
2021
, “
Business Plan for Providing Electricity 2021 (Rencana Usaha Penyediaan Tenaga Listrik)
,” Jakarta. web.pln.co.id/statics/uploads/2021/10/ruptl-2021-2030.pdf.
38.
Energy Technology Policy Division
,
2022
,
Direct Air Capture, A key Technology for net Zero
,
IEA Publications
,
France
.
You do not currently have access to this content.