Abstract

This study investigates the combustion performance of a CO2-rich fuel mixture containing ethane and methane as active species using a constant volume combustion chamber. This fuel is obtained as a byproduct of a chemical looping-based oxidative dehydrogenation (Cl-ODH) process ethylene production. The byproduct gas mixture has 40.79% CO2, 39.49% ethane, and 4.88% methane by weight with other minor compounds. Using this fuel for energy extraction would improve the process efficiency of the ethane to ethylene conversion. After initial combustion modeling, the gas fuel mixture was reduced to just the major species: CO2, ethane, and methane. The mixture was then tested for flammability limits and combustion performance under spark-ignition conditions. Effects of ambient conditions like temperatures between 300 and 400 K with initial pressures from 1 to 10 bar were tested. The effects of stoichiometry were tested to understand flame velocities and heat release. The fuel mixture showed an overall reduced flame velocity compared to gasoline. Instability in combustion was believed to be caused by the dissociation of ethane under elevated conditions. At higher pressures, the flame produces lower cumulative heat release. Simulations were also performed using a model tuned to replicate the operations of the combustion chamber used in the experiments. Heat release and unburnt fuel mass data were calculated to identify the discrepancies in the combustion completeness at elevated pressures. The effects of CO2 quenching the flame coupled with the increased dissociation of the fuel species can lead to up to more than 75% of the fuel mixture being unburnt. Data from this study were used to modify a small-scale spark-ignition engine to use this fuel and produce usable energy.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Neal
,
L. M.
,
Yusuf
,
S.
,
Sofranko
,
J. A.
, and
Li
,
F.
,
2016
, “
Oxidative Dehydrogenation of Ethane: A Chemical Looping Approach
,”
Energy Technol.
,
4
(
10
), pp.
1200
1208
.
2.
Neal
,
L. M.
,
Haribal
,
V. P.
, and
Li
,
F.
,
2019
, “
Intensified Ethylene Production via Chemical Looping Through an Exergetically Efficient Redox Scheme
,”
Iscience
,
19
, pp.
894
904
.
3.
Shao
,
Y.
,
Agarwal
,
R. K.
,
Wang
,
X.
, and
Jin
,
B.
,
2021
, “
Review of Computational Fluid Dynamics Studies on Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080802
.
4.
Han
,
T.
,
Hong
,
H.
,
Jin
,
H.
, and
Zhang
,
C.
,
2011
, “
An Advanced Power-Generation System With CO2 Recovery Integrating DME Fueled Chemical-Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
01220
.
5.
Riyadi
,
T. W.
,
Spraggon
,
M.
,
Herawan
,
S. G.
,
Idris
,
M.
,
Paristiawan
,
P. A.
,
Putra
,
N. R.
, and
Veza
,
I.
,
2023
, “
Biodiesel for HCCI Engine: Prospects and Challenges of Sustainability Biodiesel for Energy Transition
,”
Results Eng.
,
17
, p.
100916
.
6.
Karim
,
G. A.
, and
Wierzba
,
I.
,
1992
, “
Methane-Carbon Dioxide Mixtures as a Fuel
,” SAE Technical Paper No. 921557.
7.
Anggono
,
W.
,
Dwiputra Suprianto
,
F.
,
Wijaya
,
T. P.
, and
Tanoto
,
M. S.
,
2014
, “
Behavior of Flame Propagation in Biogas Spark Ignited Premix Combustion With Carbon Dioxide Inhibitor
,”
Adv. Mater. Res.
,
1044
, pp.
251
254
.
8.
Deng
,
J.
,
Yang
,
Y.
,
Zhang
,
Y.-N.
,
Liu
,
B.
, and
Shu
,
C.-M.
,
2018
, “
Inhibiting Effects of Three Commercial Inhibitors in Spontaneous Coal Combustion
,”
Energy
,
160
, pp.
1174
1185
.
9.
Tu
,
Y.
,
Yang
,
W.
,
Siah
,
K. B.
, and
Prabakaran
,
S.
,
2019
, “
A Comparative Study of Methane MILD Combustion in O2/N2, O2/CO2 and O2/H2O
,”
Energy Procedia
,
158
, pp.
1473
1478
.
10.
Zhang
,
J.
,
Mi
,
J.
,
Li
,
P.
,
Wang
,
F.
, and
Dally
,
B. B.
,
2015
, “
Moderate or Intense Low-Oxygen Dilution Combustion of Methane Diluted by CO2 and N2
,”
Energy Fuels
,
29
(
7
), pp.
4576
4585
.
11.
Tu
,
Y.
,
Liu
,
H.
, and
Yang
,
W.
,
2017
, “
Flame Characteristics of CH4/H2 on a Jet-in-Hot-Coflow Burner Diluted by N2, CO2, and H2O
,”
Energy Fuels
,
31
(
3
), pp.
3270
3280
.
12.
Zhang
,
Z.
,
Li
,
X.
,
Zhang
,
L.
,
Luo
,
C.
,
Mao
,
Z.
,
Xu
,
Y.
,
Liu
,
J.
,
Liu
,
G.
, and
Zheng
,
C.
,
2019
, “
Numerical Investigation of the Effects of Different Injection Parameters on Damköhler Number in the Natural Gas MILD Combustion
,”
Fuel
,
237
, pp.
60
70
.
13.
Tu
,
Y.
,
Su
,
K.
,
Liu
,
H.
,
Chen
,
S.
,
Liu
,
Z.
, and
Zheng
,
C.
,
2016
, “
Physical and Chemical Effects of CO2 Addition on CH4/H2 Flames on a Jet in Hot Coflow (JHC) Burner
,”
Energy Fuels
,
30
(
2
), pp.
1390
1399
.
14.
Shi
,
P.
,
Zhang
,
T.
,
Yang
,
W.
,
Zhou
,
Z.
,
Zhou
,
J.
, and
Liu
,
J.
,
2024
, “
Exploring the Impact of CO2 Atmosphere on Propane Moderate or Intense Low-Oxygen Dilution Combustion: A Numerical Simulation Study
,”
ASME J. Energy Resour. Technol.
,
146
(
4
), p.
042302
.
15.
Rashwan
,
S. S.
,
Abdelkader
,
B.
,
Abdalmonem
,
A.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Ibrahim
,
A. H.
,
2022
, “
Experimental and Statistical ANOVA Analysis on Combustion Stability of CH4/O2/CO2 in a Partially Premixed Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062301
.
16.
Kokjohn
,
S.
,
Reitz
,
R.
,
Splitter
,
D.
, and
Musculus
,
M.
,
2012
, “
Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence
,”
SAE Int. J. Engines
,
5
(
2
), pp.
248
269
.
17.
Zhu
,
H.
,
Wei
,
J.
,
Wang
,
H.
, and
Yao
,
M.
,
2020
, “
Combined Effects of Fuel Reactivity and Intake Thermodynamic Conditions on Heat Release and Emissions of Compression Ignition Combustion
,”
Fuel
,
282
, p.
118859
.
18.
Sharma
,
S.
,
Chowdhury
,
A.
, and
Kumar
,
S.
,
2022
, “
Effect of CO2/N2 Dilution on Characteristics of Liquid Fuel Combustion in Flameless Combustion Mode
,”
Combust. Sci. Technol.
,
194
(
4
), pp.
721
744
.
19.
Liu
,
Y.
,
Cheng
,
J.
,
Zou
,
C.
,
Lu
,
L.
, and
Jing
,
H.
,
2019
, “
Ignition Delay Times of Ethane Under O2/CO2 Atmosphere at Different Pressures by Shock Tube and Simulation Methods
,”
Combust. Flame
,
204
, pp.
380
390
.
20.
Yossefi
,
D.
,
Ashcroft
,
S. J.
,
Hacohen
,
J.
,
Belmont
,
M. R.
, and
Thorpe
,
I.
,
1995
, “
Combustion of Methane and Ethane with CO2 Replacing N2 as a Diluent. Modelling of Combined Effects of Detailed Chemical Kinetics and Thermal Properties on the Early Stages of Combustion
,”
Fuel
,
74
(
7
), pp.
1061
1071
.
21.
Shi
,
P.
,
Yang
,
W.
,
Wu
,
P.
,
Zhou
,
J.
, and
Liu
,
J.
,
2022
, “
Numerical Study on Combustion Performance of Propane Non-Premixed Mild in O2/CO2 Atmosphere
,”
Energy Sources, Part A
, pp.
1
12
.
22.
Imteyaz
,
B.
, and
Habib
,
M. A.
,
2015
, “
Study of Combustion Characteristics of Ethanol at Different Dilution With the Carrier Gas
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032205
.
23.
Song
,
Y.
,
Zou
,
C.
,
He
,
Y.
, and
Zheng
,
C.
,
2015
, “
The Chemical Mechanism of the Effect of CO2 on the Temperature in Methane Oxy-Fuel Combustion
,”
Int. J. Heat Mass Transfer
,
86
, pp.
622
628
.
24.
Mohammadi
,
A. H.
,
Afzal
,
W.
, and
Richon
,
D.
,
2008
, “
Experimental Data and Predictions of Dissociation Conditions for Ethane and Propane Simple Hydrates in the Presence of Methanol, Ethylene Glycol, and Triethylene Glycol Aqueous Solutions
,”
J. Chem. Eng. Data
,
53
(
3
), pp.
683
686
.
25.
Lai
,
H.
, and
Thomas
,
S.
, “
Numerical Study of Contaminant Effects on Combustion of Hydrogen, Ethane, and Methane in Air
,”
International Aerospace Planes and Hypersonics Technologies
,
Chattanooga, TN
,
Apr. 3–7
, p.
6097
.
26.
Cooke
,
D. F.
, and
Williams
,
A.
,
1971
, “
Shock-Tube Studies of the Ignition and Combustion of Ethane and Slightly Rich Methane Mixtures With Oxygen
,”
Symposium (International) on Combustion
,
Salt Lake City, UT
,
Aug. 23–29
.
27.
Zhang
,
P.
,
Zsély
,
I. G.
,
Samu
,
V.
,
Nagy
,
T.
, and
Turányi
,
T.
,
2021
, “
Comparison of Methane Combustion Mechanisms Using Shock Tube and Rapid Compression Machine Ignition Delay Time Measurements
,”
Energy Fuels
,
35
(
15
), pp.
12329
12351
.
28.
Wang
,
Y.
,
Han
,
W.
, and
Chen
,
Z.
,
2021
, “
Effects of Stratification on Premixed Cool Flame Propagation and Modeling
,”
Combust. Flame
,
229
, p.
111394
.
29.
Rakopoulos
,
C. D.
,
Antonopoulos
,
K. A.
, and
Rakopoulos
,
D. C.
,
2007
, “
Experimental Heat Release Analysis and Emissions of a HSDI Diesel Engine Fueled With Ethanol–Diesel Fuel Blends
,”
Energy
,
32
(
10
), pp.
1791
1808
.
30.
Wang
,
L.
,
Nonavinakere Vinod
,
K.
, and
Fang
,
T.
,
2019
, “
Effects of Fuels on Flash Boiling Spray From a GDI Hollow Cone Piezoelectric Injector
,”
Fuel
,
257
, p.
116080
.
31.
Jing
,
W.
,
Wu
,
Z.
,
Roberts
,
W. L.
, and
Fang
,
T.
,
2016
, “
Spray Combustion of Biomass-Based Renewable Diesel Fuel Using Multiple Injection Strategy in a Constant Volume Combustion Chamber
,”
Fuel
,
181
, pp.
718
728
.
32.
Zhang
,
Y.
,
Wang
,
L.
,
Liu
,
P.
,
Guan
,
B.
,
Ni
,
H.
,
Huang
,
Z.
, and
Lin
,
H.
,
2018
, “
Experimental and Kinetic Study of the Effects of CO2 and H2O Addition on PAH Formation in Laminar Premixed C2H4/O2/Ar Flames
,”
Combust. Flame
,
192
, pp.
439
451
.
33.
Moghadasi
,
M. H.
,
Riazi
,
R.
,
Tabejamaat
,
S.
, and
Mardani
,
A.
,
2019
, “
Effects of Preheating and CO2 Dilution on Oxy-MILD Combustion of Natural Gas
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122002
.
34.
Wu
,
J.
,
Chen
,
L.
,
Bengtsson
,
P. E.
,
Zhou
,
J.
,
Zhang
,
J.
,
Wu
,
X.
, and
Cen
,
K.
,
2019
, “
Effects of Carbon Dioxide Addition to Fuel on Soot Evolution in Ethylene and Propane Diffusion Flames
,”
Combust. Flame
,
199
, pp.
85
95
.
35.
Wang
,
Y.
,
Gu
,
M.
,
Zhu
,
Y.
,
Cao
,
L.
,
Zhu
,
B.
,
Wu
,
J.
,
Lin
,
Y.
, and
Huang
,
X.
,
2021
, “
A Review of the Effects of Hydrogen, Carbon Dioxide, and Water Vapor Addition on Soot Formation in Hydrocarbon Flames
,”
Int. J. Hydrogen Energy
,
46
(
61
), pp.
31400
31427
.
36.
Anderlohr
,
J. M.
,
Pires da Cruz
,
A.
,
Bounaceur
,
R.
, and
Battin-Leclerc
,
F.
,
2010
, “
Thermal and Kinetic Impact of CO, CO2, and H2O on the Postoxidation of IC-Engine Exhaust Gases
,”
Combust. Sci. Technol.
,
182
(
1
), pp.
39
59
.
37.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinet.
,
46
(
9
), pp.
512
542
.
38.
Ranzi
,
E.
,
Cavallotti
,
C.
,
Cuoci
,
A.
,
Frassoldati
,
A.
,
Pelucchi
,
M.
, and
Faravelli
,
T.
,
2015
, “
New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-Alkanes
,”
Combust. Flame
,
162
(
5
), pp.
1679
1691
.
39.
Gore
,
M.
,
Nonavinakere Vinod
,
K.
, and
Fang
,
T.
,
2023
, “
Experimental Investigation of Gaseous Mixtures of Ethane, Methane, and Carbon Dioxide as an Alternative to Conventional Fuel in Spark Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
032301
.
You do not currently have access to this content.