Abstract

This study assesses renewable hydrogen production via gasification of residual biomass, using artificial neural networks (ANNs) for predictive modeling. The process uses residues from sugarcane and orange harvests, sewage sludge, corn byproducts, coffee remnants, eucalyptus remains, and urban waste. Simulation data from aspen plus® software predict hydrogen conversion from each biomass type, with a three-layer feedforward neural network algorithm used for model construction. The model showed high accuracy, with R2 values exceeding 0.9941 and 0.9931 in training and testing datasets, respectively. Performance metrics revealed a maximum higher heating value (HHV) of 18.1 MJ/kg for sewage sludge, the highest cold gas efficiency for urban and orange waste (82.2% and 80.6%), and the highest carbon conversion efficiency for sugarcane bagasse and orange residue (92.8% and 91.2%). Corn waste and sewage sludge yielded the highest hydrogen mole fractions (0.55 and 0.52). The system can reach relative exergy efficiencies from 24.4% for sugarcane straw residues to 42.6% for sugarcane bagasse. Rational exergy efficiencies reached from 23.7% (coffee waste) to 39.0% (sugarcane bagasse). This research highlights the potential of ANNs in forecasting hydrogen conversion and assessing the performance of gasification-based renewable hydrogen procedures using biomass wastes.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Thraen
,
D.
, and
Shaubach
,
K.
,
2017
,
Global Wood Pellet Industry and Trade Study 2017
,
IEA Bioenergia
,
Paris, France
.
2.
Habib
,
M. A.
,
Haque
,
M. A.
,
Imteyaz
,
B.
,
Hussain
,
M.
, and
Abdelnaby
,
M. M.
,
2023
, “
Potential of Integrating Solar Energy Into Systems of Thermal Power Generation, Cooling-Refrigeration, Hydrogen Production, and Carbon Capture
,”
ASME J. Energy Resour. Technol.
,
145
(
11
), p.
110801
.
3.
Sapali
,
S. N.
, and
Raibhole
,
V. N.
,
2013
, “
Exergy Analysis of Cryogenic Air Separation Unit Integrated With Biomass Gasifier
,”
Congr. Eng. Comput. Sci.
,
2
, pp.
323
390
.
4.
Wu
,
Y.
,
Xiang
,
Y.
,
Cai
,
L.
,
Liu
,
H.
, and
Liang
,
Y.
,
2020
, “
Optimization of a Novel Cryogenic Air Separation Process Based on Cold Energy Recovery of LNG With Exergoeconomic Analysis
,”
J. Cleaner Prod.
,
275
, p.
123027
.
5.
Banerjee
,
S.
,
Tiarks
,
J. A.
, and
Kong
,
S. C.
,
2015
, “
Modeling Biomass Gasification System Using Multistep Kinetics Under Various Oxygen–Steam Conditions
,”
Environ. Prog. Sustainable Energy
,
34
(
4
), pp.
1148
1155
.
6.
Dhanavath
,
K. N.
,
Shah
,
K.
,
Bhargava
,
S. K.
,
Bankupalli
,
S.
, and
Parthasarathy
,
R.
,
2018
, “
Oxygen–Steam Gasification of Karanja Press Seed Cake: Fixed Bed Experiments, ASPEN Plus Process Model Development and Benchmarking With Saw Dust, Rice Husk and Sunflower Husk
,”
J. Environ. Chem. Eng.
,
6
(
2
), pp.
3061
3069
.
7.
Lan
,
W.
,
Chen
,
G.
,
Zhu
,
X.
,
Wang
,
X.
,
Liu
,
C.
, and
Xu
,
B.
,
2018
, “
Biomass Gasification-Gas Turbine Combustion for Power Generation System Model Based on ASPEN PLUS
,”
Sci. Total Environ.
,
628–629
, pp.
1278
1286
.
8.
Sharma
,
A. K.
,
Antil
,
S.
, and
Sachdeva
,
G.
,
2023
, “
Small-Scale Toroidal Fluidized Bed Gasification System: Development and Experimental Aspects
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
051501
.
9.
Sahraei
,
M. H.
,
Duchesne
,
M. A.
,
Boisvert
,
P. G.
,
Hughes
,
R. W.
, and
Ricardez-Sandoval
,
L. A.
,
2017
, “
Reduced-Order Modeling of a Commercial-Scale Gasifier Using a Multielement Injector Feed System
,”
Ind. Eng. Chem. Res.
,
56
(
25
), pp.
7285
7300
.
10.
SubLaban
,
A.
,
Kessler
,
T. J.
,
Van Dam
,
N.
, and
Mack
,
J. H.
,
2023
, “
Artificial Neural Network Models for Octane Number and Octane Sensitivity: A Quantitative Structure Property Relationship Approach to Fuel Design
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
102302
.
11.
Shahbaz
,
M.
,
Taqvi
,
S. A.
,
Loy
,
A. C.
,
Inayat
,
A.
,
Uddin
,
F.
,
Bokhari
,
A.
, and
Naqvi
,
S. R.
,
2019
, “
Artificial Neural Network Approach for the Steam Gasification of Palm Oil Waste Using Bottom Ash and CaO
,”
Renewable Energy
,
132
, pp.
243
254
.
12.
Wang
,
H.
,
Chaffart
,
D.
, and
Ricardez-Sandoval
,
L. A.
,
2019
, “
Modelling and Optimization of a Pilot-Scale Entrained-Flow Gasifier Using Artificial Neural Networks
,”
Energy
,
188
, p.
116076
.
13.
Liu
,
Z.
, and
Liu
,
J.
,
2022
, “
Machine Learning Assisted Analysis of an Ammonia Engine Performance
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112307
.
14.
Atasoy
,
V. E.
,
Suzer
,
A. E.
, and
Ekici
,
S.
,
2022
, “
A Comparative Analysis of Exhaust Gas Temperature Based on Machine Learning Models for Aviation Applications
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082101
.
15.
Mikulandrić
,
R.
,
Lončar
,
D.
,
Böhning
,
D.
,
Böhme
,
R.
, and
Beckmann
,
M.
,
2014
, “
Artificial Neural Network Modelling Approach for a Biomass Gasification Process in Fixed bed Gasifiers
,”
Energy Convers. Manage.
,
87
, pp.
1210
1223
.
16.
Serrano
,
D.
,
Golpour
,
I.
, and
Sánchez-Delgado
,
S.
,
2020
, “
Predicting the Effect of Bed Materials in Bubbling Fluidized Bed Gasification Using Artificial Neural Networks (ANNs) Modeling Approach
,”
Fuel
,
266
, p.
117021
.
17.
Safarian
,
S.
,
Ebrahimi Saryazdi
,
S. M.
,
Unnthorsson
,
R.
, and
Richter
,
C.
,
2020
, “
Artificial Neural Network Integrated With Thermodynamic Equilibrium Modeling of Downdraft Biomass Gasification-Power Production Plant
,”
Energy
,
213
, p.
118800
.
18.
Sözen
,
A.
, and
Arcaklioǧlu
,
E.
,
2007
, “
Exergy Analysis of an Ejector-Absorption Heat Transformer Using Artificial Neural Network Approach
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
481
491
.
19.
ASPENTECH
,
2011
, “Aspen Plus V8.8.”
20.
Ardila
,
Y. C.
,
Figueroa
,
J. E. J.
,
Lunelli
,
B. H.
,
Filho
,
R. M.
, and
Maciel
,
M. R. W.
,
2012
, “
Syngas Production From Sugar Cane Bagasse in a Circulating Fluidized Bed Gasifier Using Aspen PlusTM: Modelling and Simulation
,”
Comput. Aided Chem. Eng.
,
30
, pp.
1093
1097
.
21.
Languer
,
M. P.
,
Batistella
,
L.
,
Alves
,
J. L. F.
,
Da Silva
,
J. C. G.
,
da Silva Filho
,
V. F.
,
Di Domenico
,
M.
,
Moreira
,
R. D. F. P. M.
, and
José
,
H. J.
,
2020
, “
Insights Into Pyrolysis Characteristics of Brazilian High-Ash Sewage Sludges Using Thermogravimetric Analysis and Bench-Scale Experiments With GC-MS to Evaluate Their Bioenergy Potential
,”
Biomass Bioenergy
,
138
, p.
105614
.
22.
Franco Jacome
,
D. L.
,
2014
, “Caracterização físico-química das cinzas da palha de cana-de-açúcar através de análises térmicas simultâneas (STA).” http://repositorio.unicamp.br/jspui/handle/REPOSIP/265950, Accessed August 17, 2021
23.
Manrique
,
R.
,
Vásquez
,
D.
,
Chejne
,
F.
, and
Pinzón
,
A.
,
2020
, “
Energy Analysis of a Proposed Hybrid Solar–Biomass Coffee Bean Drying System
,”
Energy
,
202
, pp.
1
8
.
24.
Guerrero
,
M.
,
Ruiz
,
M. P.
,
Alzueta
,
M. U.
,
Bilbao
,
R.
, and
Millera
,
A.
,
2005
, “
Pyrolysis of Eucalyptus at Different Heating Rates: Studies of Char Characterization and Oxidative Reactivity
,”
J. Anal. Appl. Pyrolysis
,
74
(
1–2
), pp.
307
314
.
25.
Gutierrez-Gomez
,
A. C.
,
Gallego
,
A. G.
,
Palacios-Bereche
,
R.
,
Tofano de Campos Leite
,
J.
, and
Pereira Neto
,
A. M.
,
2021
, “
Energy Recovery Potential From Brazilian Municipal Solid Waste via Combustion Process Based on Its Thermochemical Characterization
,”
J. Cleaner Prod.
,
293
, p.
126145
.
26.
Alves
,
J. L. F.
,
Trindade
,
E. O. D.
,
da Silva
,
J. C.
,
Mumbach
,
G. D.
,
Alves
,
R. F.
,
Barbosa Filho
,
J. M.
,
Athayde-Filho
,
P. F. D.
, and
Sena
,
R. F. D.
,
2020
, “
Lignocellulosic Residues From the Brazilian Juice Processing Industry as Novel Sustainable Sources for Bioenergy Production: Preliminary Assessment Using Physicochemical Characteristics
,”
J. Braz. Chem. Soc.
,
31
(
9
), pp.
1939
1948
.
27.
Pan-In
,
S.
, and
Sukasem
,
N.
,
2017
, “
Methane Production Potential From Anaerobic Co-Digestions of Different Animal Dungs and Sweet Corn Residuals
,”
Energy Procedia
,
138
, pp.
943
948
.
28.
Rambo
,
M. K. D.
,
Schmidt
,
F. L.
, and
Ferreira
,
M. M. C.
,
2015
, “
Analysis of the Lignocellulosic Components of Biomass Residues for Biorefinery Opportunities
,”
Talanta
,
144
, pp.
696
703
.
29.
Akogun
,
O. A.
, and
Waheed
,
M. A.
,
2019
, “
Property Upgrades of Some Raw Nigerian Biomass Through Torrefaction Pre-Treatment—A Review
,”
J. Phys. Conf. Ser.
,
1378
(
3
), p.
032026
.
30.
ASPENTECH
,
2011
,
Aspen Physical Property System—Physical Property Methods.
,
Aspen Technology, Inc
,
Burlington, MA
.
31.
Vargas
,
G. G.
,
Flórez-Orrego
,
D. A.
, and
de Oliveira Junior
,
S.
,
2023
, “
Comparative Exergy and Environmental Assessment of the Residual Biomass Gasification Routes for Hydrogen and Ammonia Production
,”
Entropy
,
25
(
7
), p.
1098
.
32.
Basu
,
P.
,
2010
,
Biomass Gasification and Pyrolysis
,
Biomass Gasif. Pyrolysis
,
Burlington, MA
.
33.
Bergman
,
P. C.
,
Boersma
,
A. R.
,
Kiel
,
J. H.
,
Prins
,
M. J.
,
Ptasinski
,
K. J.
, and
Janssen
,
F. J.
“Torrefaction for Entrained-Flow Gasification of Biomass Revisions A B Made by.” www.ecn.nl/biomass, Accessed August 11, 2021
34.
Nakashima
,
R.
,
Flórez-Orrego
,
D.
, and
de Oliveira Junior
,
S.
,
2019
, “
Integrated Anaerobic Digestion and Gasification Processes for Upgrade of Ethanol Biorefinery Residues
,”
J. Power Technol.
,
99
(
2
), pp.
104
114
.
35.
Flórez-Orrego
,
D.
,
Maréchal
,
F.
, and
de Oliveira Junior
,
S.
,
2019
, “
Comparative Exergy and Economic Assessment of Fossil and Biomass-Based Routes for Ammonia Production
,”
Energy Convers. Manage.
,
194
, pp.
22
36
.
36.
Kinchin
,
C. M.
, and
Bain
,
R. L.
,
2009
,
Hydrogen Production From Biomass via Indirect Gasification: The Impact of NREL Process Development Unit Gasifier Correlations
,
National Renewable Energy Laboratory
,
Golden, CO
.
37.
Puig-Gamero
,
M.
,
Argudo-Santamaria
,
J.
,
Valverde
,
J. L.
,
Sánchez
,
P.
, and
Sanchez-Silva
,
L.
,
2018
, “
Three Integrated Process Simulation Using Aspen Plus®: Pine Gasification, Syngas Cleaning and Methanol Synthesis
,”
Energy Convers. Manage.
,
177
, pp.
416
427
.
38.
Marcantonio
,
V.
,
De Falco
,
M.
,
Capocelli
,
M.
,
Bocci
,
E.
,
Colantoni
,
A.
, and
Villarini
,
M.
,
2019
, “
Process Analysis of Hydrogen Production From Biomass Gasification in Fluidized Bed Reactor With Different Separation Systems
,”
Int. J. Hydrogen Energy
,
44
(
21
), pp.
10350
10360
.
39.
Puig-Arnavat
,
M.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2012
, “
Modified Thermodynamic Equilibrium Model for Biomass Gasification: A Study of the Influence of Operating Conditions
,”
Energy Fuels
,
26
(
2
), pp.
1385
1394
.
40.
Spath
,
P. L.
, and
Dayton
,
D. C.
,
2003
, “Preliminary Screening – Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals With Emphasis on the Potential for Biomass-Derived Syngas.” http://www.osti.gov/bridge. Accessed March 03, 2022
41.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
,
1987
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes.
,
Canadian Metallurgical Quarterly
,
United States
.
42.
Channiwala
,
S. A.
, and
Parikh
,
P. P.
,
2002
, “
A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels
,”
Fuel
,
81
(
8
), pp.
1051
1063
.
43.
Flórez-Orrego
,
D.
, and
de Oliveira Junior
,
S.
,
2016
, “
On the Efficiency, Exergy Costs and CO2 Emission Cost Allocation for an Integrated Syngas and Ammonia Production Plant
,”
Energy
,
117
, pp.
341
360
.
44.
Flórez-Orrego
,
D.
,
Nascimento Silva
,
F.
, and
de Oliveira Junior
,
S.
,
2019
, “
Syngas Production With Thermo-Chemically Recuperated gas Expansion Systems: An Exergy Analysis and Energy Integration Study
,”
Energy
,
178
, pp.
293
308
.
45.
Bagheri
,
M.
,
Esfilar
,
R.
,
Sina Golchi
,
M.
, and
Kennedy
,
C. A.
,
2020
, “
Towards a Circular Economy: A Comprehensive Study of Higher Heat Values and Emission Potential of Various Municipal Solid Wastes
,”
Waste Manage.
,
101
, pp.
210
221
.
46.
Cavalcanti
,
F. M.
,
Schmal
,
M.
,
Giudici
,
R.
, and
Brito Alves
,
R. M.
,
2019
, “
A Catalyst Selection Method for Hydrogen Production Through Water-Gas Shift Reaction Using Artificial Neural Networks
,”
J. Environ. Manage.
,
237
, pp.
585
594
.
47.
The Pandas Development Team
,
2020
, “pandas-dev/pandas: Pandas.” Zenodo.
48.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
, et al
“TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.” www.tensorflow.org, Accessed October 28, 2023
49.
Narayan
,
S.
,
1997
, “
The Generalized Sigmoid Activation Function: Competitive Supervised Learning
,”
Inf. Sci. (NY)
,
99
(
1–2
), pp.
69
82
.
50.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proc
,
San Diego, CA
,
May 7–9
. https://arxiv.org/abs/1412.6980v9
51.
Vargas
,
G.
, and
Oliveira
,
S.
Jr
,
2023
, “
Assessment of Electricity Generation via Biomass Gasification by Neural Network Algorithm
,”
36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems – ECOS 2023
,
June 25–30
.
52.
Domingos
,
M. E. G. R.
,
Flórez-Orrego
,
D.
,
dos Santos
,
M. T.
,
Velásquez
,
H. I.
, and
de Oliveira
,
S.
,
2021
, “
Exergy and Environmental Analysis of Black Liquor Upgrading Gasification in an Integrated Kraft Pulp and Ammonia Production Plant
,”
Int. J. Exergy
,
35
(
1
), pp.
35
65
.
53.
C
,
A.
,
de Souza
,
C.
,
Luz-Silveira
,
J.
, and
Sosa
,
M. I.
,
2006
, “
Physical-Chemical and Thermodynamic Analyses of Ethanol Steam Reforming for Hydrogen Production
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
3
), pp.
346
350
.
54.
Yoru
,
Y.
,
Karakoc
,
T. H.
, and
Hepbasli
,
A.
,
2009
, “
Application of Artificial Neural Network (ANN) Method to Exergy Analysis of Thermodynamic Systems
,”
8th Int. Conf. Mach. Learn. Appl. ICMLA 2009
, pp.
715
718
.
55.
Ozonoh
,
M.
,
Oboirien
,
B. O.
,
Higginson
,
A.
, and
Daramola
,
M. O.
,
2020
, “
Dataset From Estimation of Gasification System Efficiency Using Artificial Neural Network Technique
,”
Chem. Data Collect.
,
25
, p.
100321
.
You do not currently have access to this content.