Abstract

Yttria-stabilized zirconia (YSZ) ((ZrO2)0.93(Y2O3)0.07) and alumina-yttria-stabilized zirconia ((Al2O3)0.853 + (ZrO2)0.93(Y2O3)0.07) thermal barrier coatings (TBCs) were modeled in the presence of hydrogen-enriched combustion product gases to evaluate phase composition and thermal expansivity (coefficient of thermal expansion). Thermal equilibrium simulations for various equivalence ratios (0.5–0.75) and hydrogen enrichment percentages (0−50%) were conducted to determine the product gas composition for various combustor operating conditions. The obtained product gases were then used in a second thermal equilibrium simulation to demonstrate their effect on the defined thermal barrier coatings. The modeling predictions showed that hydrogen enrichment percentage and equivalence ratio were positively correlated to thermal expansivity for both the thermal barrier coatings examined. The alumina-YSZ composite coating exhibited a higher CTE, more closely matching the CTE of a metallic bond coat, for the studied conditions. This closer match of thermal expansivity results in less significant thermal stresses than the YSZ thermal barrier coating. An increase in hydrogen enrichment percentage and equivalence ratio yielded increased percentages of phase transitions from tetragonal zirconia (t-ZrO2) to cubic zirconia (c-ZrO2). The YSZ thermal barrier coating had a larger percentage of phase transitions throughout the operating range examined, which renders concerns for potential failure from thermal cycling and creep. Theoretical examination of the phase composition and thermal expansivity provided further insights into the fate and behavior of the thermal barrier coatings.

References

1.
Shang
,
Z.
,
Wei
,
X.
,
Song
,
D.
,
Zou
,
J.
,
Liang
,
S.
,
Liu
,
G.
,
Nie
,
L.
, and
Gong
,
X.
,
2020
, “
Microstructure and Mechanical Properties of a New Nickel-Based Single Crystal Superalloy
,”
J. Mater. Res. Technol.
,
9
(
5
), pp.
11641
11649
.
2.
National Research Council
,
1996
,
Coatings for High-Temperature Structural Materials
,
The National Academies Press eBooks
,
Washington, DC
.
3.
Ferrari
,
M.
, and
Harding
,
J. H.
,
1992
, “
Thermal Stress Field in Plasma-Sprayed Ceramic Coatings
,”
ASME J. Energy Resour. Technol.
,
114
(
2
), pp.
105
109
.
4.
Sheets
,
B. E.
, and
Kokini
,
K.
,
1992
, “
Thermal Stresses Under Engine Heat Flux—Part 1: Ceramic Coating on Metal Substrate
,”
ASME J. Energy Resour. Technol.
,
114
(
4
), pp.
291
297
.
5.
Banerjee
,
P.
,
Roy
,
A.
,
Sen
,
S.
,
Ghosh
,
A.
,
Saha
,
G.
,
Seikh
,
A. H.
,
Alnaser
,
I. A.
, and
Ghosh
,
M.
,
2023
, “
Service Life Assessment of Yttria Stabilized Zirconia (YSZ) Based Thermal Barrier Coating Through Wear Behaviour
,”
Heliyon
,
9
(
5
), p.
e16107
.
6.
Clarke
,
D. R.
, and
Phillpot
,
S. R.
,
2005
, “
Thermal Barrier Coating Materials
,”
Mater. Today
,
8
(
6
), pp.
22
29
.
7.
2011
, “
Cubic Fluorite Yttria Stabilized Zirconia (YSZ) Film Synthesis by Combustion Chemical Vapour Deposition(C-CVD)
,”
IEEE Conference Publication | IEEE Xplore
,
Chennai, India
,
Nov. 1
, pp.
65
68
.
8.
Song
,
X.
,
Ding
,
Y.
,
Zhang
,
J.
,
Jiang
,
C.
,
Liu
,
Z.
,
Lin
,
C.
,
Zheng
,
W.
, and
Zeng
,
Y.
,
2023
, “
Thermophysical and Mechanical Properties of Cubic, Tetragonal and Monoclinic ZrO2
,”
J. Mater. Res. Technol.
,
23
(
1
), pp.
648
655
.
9.
Ballard
,
J. D.
,
Davenport
,
J.
,
Lewis
,
C. F.
,
Doremus
,
R. H.
,
Schadler
,
L. S.
, and
Nelson
,
W. A.
,
2003
, “
Phase Stability of Thermal Barrier Coatings Made From 8 wt% Yttria Stabilized Zirconia: A Technical Note
,”
J. Therm. Spray Technol.
,
12
(
1
), pp.
34
37
.
10.
Lyu
,
G.
,
Kim
,
I. S.
,
Song
,
D.
,
Park
,
H. M.
,
Kim
,
J. S.
,
Song
,
T.
,
Myoung
,
S.
,
Jung
,
Y. G.
, and
Zhang
,
J.
,
2020
, “
Sintering Behavior and Phase Transformation of YSZ-LZ Composite Coatings
,”
Ceram. Int.
,
46
(
2
), pp.
1307
1313
.
11.
Li
,
J.
,
Zhu
,
R.
,
Jun
,
Y.
,
Lu
,
X.
,
Zhao
,
S.
,
Xu
,
M.
,
Huang
,
J.
, et al
,
2022
, “
Phase Stability, Microstructure and Mechanical Properties of Nanostructured Yttria Stabilized Zirconia Coatings Subjected to Moisture Degradation
,”
Ceram. Int.
,
48
(
21
), pp.
31800
31810
.
12.
Yang
,
F.
,
2011
, “
Electrical and Thermal Properties of Yttria-Stabilised Zirconia (YSZ)-Based Ceramic Materials
,”
Ph.D. thesis
,
Faculty of Engineering and Physical Science, University of Manchester
.
13.
Pint
,
B. A.
, and
Haynes
,
J. A.
,
2013
, “
Effect of Water Vapour Content on Thermal Barrier Coating Lifetime
,”
Mater. Sci. Technol.
,
29
(
7
), pp.
828
834
.
14.
Shen
,
T.
,
Wu
,
Y.
,
Alahmadi
,
T. A.
,
Alharbi
,
S. A.
,
MaroušEk
,
J.
,
Xia
,
C.
, and
Praveenkumar
,
T. R.
,
2023
, “
Assessment of Combustion and Acoustic Characteristics of Scenedesmus dimorphus Blended With Hydrogen Fuel on Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
052302
.
15.
Verma
,
S.
,
Kumar
,
K.
,
Das
,
L.
, and
Kaushik
,
S. C.
,
2021
, “
Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092301
.
16.
Rudolphi
,
M.
,
Renusch
,
D.
, and
Schütze
,
M.
,
2008
, “
Verification of Moisture-Induced Delayed Failure of Thermal Barrier Coatings
,”
Scr. Mater.
,
59
(
2
), pp.
255
257
.
17.
Ramesh
,
M.
,
Krishnaveni
,
M.
,
Karuppuswamy
,
P.
, and
Rajeshkumar
,
L.
,
2022
, “
Microstructure and Properties of YSZ-Al2O3 Functional Ceramic Thermal Barrier Coatings for Military Applications
,”
Bol. Soc. Esp. Ceram. Vidrio
,
61
(
6
), pp.
641
652
.
18.
Yılmaz
,
S.
,
Kumlutaş
,
D.
,
Yücekaya
,
U. A.
, and
Cumbul
,
A. Y.
,
2021
, “
Prediction of the Equilibrium Compositions in the Combustion Products of a Domestic Boiler
,”
Energy
,
233
(
1
), p.
121123
.
19.
Bäker
,
M.
, and
Seiler
,
P. E.
,
2017
, “
A Guide to Finite Element Simulations of Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
26
(
6
), pp.
1146
1160
.
20.
Chen
,
D.
,
Lu
,
J.
,
Sun
,
C.
,
Wang
,
Q.
, and
Ning
,
X.
,
2023
, “
Microstructure and Thermal Cycling Behavior of TA2O5 and Y2O3 co-Doped ZRO2 Coatings
,”
J. Therm. Spray Technol.
,
32
(
5
), pp.
1327
1337
.
21.
Hayashi
,
H.
,
Saitou
,
T.
,
Maruyama
,
N.
,
Inaba
,
H.
,
Kawamura
,
K.
, and
Mori
,
M.
,
2005
, “
Thermal Expansion Coefficient of Yttria Stabilized Zirconia for Various Yttria Contents
,”
Solid State Ionics
,
176
(
5–6
), pp.
613
619
.
22.
Fiedler
,
T.
,
Fedorova
,
Т
,
Rösler
,
J.
, and
Bäker
,
M.
,
2014
, “
Design of a Nickel-Based Bond-Coat Alloy for Thermal Barrier Coatings on Copper Substrates
,”
Metals
,
4
(
4
), pp.
503
518
.
23.
Bejarano
,
M. L.
,
Valarezo
,
A.
,
Lara-Curzio
,
E.
, and
Sampath
,
S.
,
2019
, “
Dilation Behavior of Thermal Spray Coatings
,”
J. Therm. Spray Technol.
,
28
(
8
), pp.
1851
1866
.
24.
Ushakov
,
S. V.
,
Navrotsky
,
A.
,
Weber
,
R. J.
, and
Neuefeind
,
J. C.
,
2015
, “
Structure and Thermal Expansion of YSZ and La2Zr2O7Above 1500 °C From Neutron Diffraction on Levitated Samples
,”
J. Am. Ceram. Soc.
,
98
(
10
), pp.
3381
3388
.
25.
Łada
,
P.
,
Miazga
,
A.
,
Konopka
,
K.
, and
Szafran
,
M.
,
2017
, “
Sintering Behavior and Thermal Expansion of Zirconia–Titanium Composites
,”
J. Therm. Anal. Calorim.
,
133
(
1
), pp.
55
61
.
26.
Wang
,
K.
,
Zhao
,
M.
,
Ren
,
X.
, and
Pan
,
W.
,
2019
, “
High Temperature Mechanical Properties of Zirconia Metastable t’-Phase Degraded Yttria Stabilized Zirconia
,”
Ceram. Int.
,
45
(
14
), pp.
17376
17381
.
27.
Tarasi
,
F.
,
Medraj
,
M.
,
Dolatabadi
,
A.
,
Oberste-Berghaus
,
J.
, and
Moreau
,
C.
,
2011
, “
Amorphous and Crystalline Phase Formation During Suspension Plasma Spraying of the Alumina–Zirconia Composite
,”
J. Eur. Ceram. Soc.
,
31
(
15
), pp.
2903
2913
.
28.
Choi
,
S. R.
, and
Bansal
,
N. P.
,
2003
, “
Strength, Fracture Toughness, and Slow Crack Growth of Zirconia/Alumina Composites at Elevated Temperature
,” NASA STI Program Office, https://ntrs.nasa.gov/api/citations/20030032493/downloads/20030032493.pdf
You do not currently have access to this content.