Abstract

Urban heating and cooling demands account for a significant portion of global energy consumption. It is crucial to explore new energy resources and innovative solutions to meet environmental targets. Urban infrastructures like data centers, water networks, and tunnels move and collect energy, in some cases residual energy, that is valuable because of its proximity to consumers. The novelty of this work lies in the exploration of utilizing the accumulated residual heat that is not used in subway air to improve the energy efficiency of urban areas. The work focuses on the potential use of this residual heat by the installation of heat pumps in subway platforms or tunnels. By installing a heat pump on subway platforms or tunnels, this residual heat can be efficiently utilized for heating demand or producing domestic hot water. A general methodology for assessing the performance of such air source heat pumps in the subway context is presented. The calculation of the coefficients of performance (COP) and seasonal coefficients of performance (SCOP) calculation is outlined, with a detailed example illustrating the methodology. The paper emphasizes a comparative analysis between the proposed system and a traditional heat pump using ambient air, highlighting the advantages of the proposed approach. Finally, the paper concludes with a brief analysis of the different effects of refrigerants on the system performance for the same boundary conditions. Results are promising, increasing the energy efficiency of big cities and reducing CO2 emissions.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
AlZahrani
,
A. A.
, and
Dincer
,
I.
,
2016
, “
Performance Assessment of an Aquifer Thermal Energy Storage System for Heating and Cooling Applications
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011901
.
2.
European Commission
,
2020
, Committing to Climate-Neutrality by 2050: Commission Proposes European Climate Law and Consults on the European Climate Pact, https://ec.europa.eu/commission/presscorner/detail/en/ip_20_335, Accessed February 21, 2020.
3.
Garimella
,
S.
, and
Garimella
,
V. S.
,
1999
, “
Commercial Boiler Waste-Heat Utilization for Air Conditioning in Developing Countries
,”
ASME J. Energy Resour. Technol.
,
121
(
3
), pp.
203
208
.
4.
Eslami
,
S.
,
Noorollahi
,
Y.
,
Marzband
,
M.
, and
Anvari-Moghaddam
,
A.
,
2023
, “
Integrating Heat Pumps Into District Heating Systems: A Multi-Criteria Decision Analysis Framework Incorporating Heat Density and Renewable Energy Mapping
,”
Sustain. Cities Soc.
,
98
(
11
), p.
104785
.
5.
Keinath
,
C. M.
,
Delahanty
,
J. C.
,
Garimella
,
S.
, and
Garrabrant
,
M. A.
,
2022
, “
Compact Diesel Engine Waste-Heat-Driven Ammonia–Water Absorption Heat Pump Modeling and Performance Maximization Strategies
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062102
.
6.
Hossain
,
M. J.
,
Chowdhury
,
J. I.
,
Balta-Ozkan
,
N.
,
Asfand
,
F.
,
Saadon
,
S.
, and
Imran
,
M.
,
2021
, “
Design Optimization of Supercritical Carbon Dioxide (s-CO2) Cycles for Waste Heat Recovery From Marine Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120901
.
7.
Binderbauer
,
P. J.
,
Hammer
,
A.
,
Lachner
,
E.
,
Klingenstein
,
N.
, and
Kienberger
,
T.
,
2023
, “
Regarding the Generation of Time Resolved Industrial Waste Heat Profiles
,”
Appl. Therm. Eng.
,
232
(
9
), p.
120969
.
8.
Yuan
,
X.
,
Liang
,
Y.
,
Hu
,
X.
,
Xu
,
Y.
,
Chen
,
Y.
, and
Kosonen
,
R.
,
2023
, “
Waste Heat Recoveries in Data Centers: A Review
,”
Renewable Sustainable Energy Rev.
,
188
(
12
), p.
113777
.
9.
Wheatcroft
,
E.
,
Wynn
,
H.
,
Lygnerud
,
K.
,
Bonvicini
,
G.
, and
Leonte
,
D.
,
2020
, “
The Role of Low Temperature Waste Heat Recovery in Achieving 2050 Goals: A Policy Positioning Paper
,”
Energies
,
13
(
8
), p.
2107
.
10.
Lygnerud
,
K.
,
Nielsen
,
S.
,
Persson
,
U.
,
Wynn
,
H.
,
Wheatcroft
,
E.
,
Antolin-Gutierrez
,
J.
,
Leonte
,
D.
, et al
,
2022
,
Handbook for Increased Recovery of Urban Excess Heat
, http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-48183.
11.
Chai
,
Y.
,
Sun
,
T.
,
Han
,
H.
,
Cao
,
F.
, and
Liu
,
Y.
,
2017
, “
Modularly Design for Waste Heat Recovery System in Subway Based on Air Source Heat Pump
,”
Procedia Eng.
,
205
(
35
), pp.
273
280
.
12.
Ninikas
,
K.
,
Hytiris
,
N.
,
Emmanuel
,
R.
,
Aaen
,
B.
, and
Younger
,
P. L.
,
2016
, “
Heat Recovery From Air in Underground Transport Tunnels
,”
Renewable Energy
,
96
(
11
), pp.
843
849
.
13.
Davies
,
G.
,
Boot-Handford
,
N.
,
Curry
,
D.
,
Dennis
,
W.
,
Ajileye
,
A.
,
Revesz
,
A.
, and
Maidment
,
G.
,
2019
, “
Combining Cooling of Underground Railways With Heat Recovery and Reuse
,”
Sustain. Cities Soc.
,
45
(
2
), pp.
543
552
.
14.
Zanetti
,
E.
,
Bordignon
,
S.
,
Conte
,
R.
,
Bisi
,
A.
,
Azzolin
,
M.
, and
Zarrella
,
A.
,
2023
, “
Experimental and Numerical Analysis of a CO2 Dual-Source Heat Pump With PVT Evaporators for Residential Heating Applications
,”
Appl. Therm. Eng.
,
233
(
2
), p.
121165
.
15.
Schibuola
,
L.
, and
Scarpa
,
M.
,
2016
, “
Experimental Analysis of the Performances of a Surface Water Source Heat Pump
,”
Energy Build.
,
113
(
4
), pp.
182
188
.
16.
Hamm
,
S. G.
,
Anderson
,
A.
,
Blankenship
,
D.
,
Boyd
,
L. W.
,
Brown
,
E. A.
,
Frone
,
Z.
,
Hamos
,
I.
, et al
,
2021
, “
Geothermal Energy R&D: An Overview of the U.S. Department of Energy’s Geothermal Technologies Office
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
100801
.
17.
O’Hegarty
,
R.
,
Kinnane
,
O.
,
Lennon
,
D.
, and
Colclough
,
S.
,
2022
, “
Air-to-Water Heat Pumps: Review and Analysis of the Performance Gap Between In-Use and Product Rated Performance
,”
Renewable Sustainable Energy Rev.
,
155
(
3
), p.
111887
.
18.
CoolPack Team
,
1999
, “
CoolPack–Simulation Tools for Refrigeration Systems
,” http://www.coolprop.org/.
19.
European Committee for Standardization
,
2023
, “
Air Conditioners, Liquid Chilling Packages and Heat Pumps, With Electrically Driven Compressors, for Space Heating and Cooling—Testing and Rating at Part Load Conditions and Calculation of Seasonal Performance
,” EN 14825:2023.
20.
Yadav
,
S.
,
Liu
,
J.
, and
Kim
,
S. C.
,
2022
, “
A Comprehensive Study on 21st-Century Refrigerants—R290 and R1234yf: A Review
,”
Int. J. Heat Mass Transfer
,
182
(
1
), p.
121947
.
You do not currently have access to this content.