Abstract

Moderate or intense low-oxygen dilution (MILD) combustion is a promising combustion technology widely recognized by the international combustion community. In this study, numerical simulation was used to investigate the effects of CO2 atmosphere on MILD combustion of propane in a 20-KW furnace.The results show that the O2/CO2 atmosphere leads to a lower average temperature in the furnace, better temperature uniformity, and more uniform distribution of OH and CH2O compared to MILD combustion in the N2/O2 atmosphere. Propane MILD combustion is established well under the physical and chemical effects of CO2. An analytical approach is proposed to describe the physical and chemical effects of CO2 on MILD combustion. The physical effect of CO2 shortens the ignition delay time and advances the pyrolysis and ignition of propane, which causes a high-temperature zone in the front furnace and reduces the temperature uniformity in MILD combustion. However, the chemical effect of CO2 dominates the establishment of the MILD combustion by increasing the ignition delay time and reducing burning rates, with the help of the physical effects of CO2 by intensifying the entrainment in the furnace. Thus, the overall effects of CO2 lead to enhanced temperature uniformity by enlarging the area and evening the temperature of both the ignition zone and combustion zone. These findings provide valuable insights into the physical and chemical mechanisms of CO2 in MILD combustion and have important implications for optimizing combustion processes for improved efficiency and reduced emissions.

References

1.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust.
,
30
(
4
), pp.
329
366
.
2.
Li
,
P.
,
Mi
,
J.
,
Dally
,
B. B.
,
Wang
,
F.
,
Wang
,
L.
,
Liu
,
Z.
,
Chen
,
S.
, and
Zheng
,
C.
,
2011
, “
Progress and Recent Trend in MILD Combustion
,”
Sci. China Technol. Sci.
,
54
(
2
), pp.
255
269
.
3.
Chen
,
L.
,
Yong
,
S. Z.
, and
Ghoniem
,
A. F.
,
2012
, “
Oxy-Fuel Combustion of Pulverized Coal: Characterization, Fundamentals, Stabilization and CFD Modeling
,”
Prog. Energy Combust.
,
38
(
2
), pp.
156
214
.
4.
Buhre
,
B. J. P.
,
Elliott
,
L. K.
,
Sheng
,
C. D.
,
Gupta
,
R. P.
, and
Wall
,
T. F.
,
2005
, “
Oxy-Fuel Combustion Technology for Coal-Fired Power Generation
,”
Prog. Energy Combust.
,
31
(
4
), pp.
283
307
.
5.
Lide
,
D. R.
,
2005
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
6.
Li
,
P.
,
Dally
,
B. B.
,
Mi
,
J.
, and
Wang
,
F.
,
2013
, “
MILD Oxy-Combustion of Gaseous Fuels in a Laboratory-Scale Furnace
,”
Combust. Flame
,
160
(
5
), pp.
933
946
.
7.
Cristian
,
C. M.
,
Alex
,
M. G. V.
,
Julian
,
O.
, and
Andres
,
A.
,
2020
, “
Numerical and Experimental Study of the Effect of Injected CO2 Flow on the Stability of Flameless Combustion
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
011024
.
8.
Tu
,
Y.
,
Liu
,
H.
, and
Yang
,
W.
,
2017
, “
Flame Characteristics of CH4/H2 on a Jet-in-Hot-Coflow Burner Diluted by N2, CO2, and H2O
,”
Energy Fuel
,
31
(
3
), pp.
3270
3280
.
9.
Tu
,
Y.
,
Yang
,
W.
,
Boon Siah
,
K.
, and
Prabakaran
,
S.
,
2019
, “
A Comparative Study of Methane MILD Combustion in O2/N2, O2/CO2 and O2/H2O
,”
Energy Proc.
,
158
, pp.
1473
1478
.
10.
Zhang
,
J.
,
Mi
,
J.
,
Li
,
P.
,
Wang
,
F.
, and
Dally
,
B. B.
,
2015
, “
Moderate or Intense Low-Oxygen Dilution Combustion of Methane Diluted by CO2 and N2
,”
Energy Fuel
,
29
(
7
), pp.
4576
4585
.
11.
Si
,
J.
,
Wang
,
G.
,
Shu
,
Z.
,
Liu
,
X.
,
Wu
,
M.
,
Zhu
,
R.
, and
Mi
,
J.
,
2021
, “
Experimental and Numerical Study on Moderate or Intense Low-Oxygen Dilution Oxy-Combustion of Methane in a Laboratory-Scale Furnace Under N2, CO2, and H2O Dilutions
,”
Energy Fuel
,
35
(
15
), pp.
12403
12415
.
12.
Biabani
,
S.
,
Shabanian
,
S. R.
, and
Bakhshi
,
H.
,
2023
, “
CFD Study on Influence of O2/CO2, O2/H2O Atmospheres and Shape of Furnace on Methane MILD Combustion
,”
Int. J. Thermophys.
,
44
(
3
), p.
38
.
13.
Sabia
,
P.
,
Sorrentino
,
G.
,
Chinnici
,
A.
,
Cavaliere
,
A.
, and
Ragucci
,
R.
,
2015
, “
Dynamic Behaviors in Methane MILD and Oxy-Fuel Combustion. Chemical Effect of CO2
,”
Energy Fuel
,
29
(
3
), pp.
1978
1986
.
14.
Glarborg
,
P.
, and
Bentzen
,
L. L. B.
,
2008
, “
Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane
,”
Energy Fuel
,
22
(
1
), pp.
291
296
.
15.
Moghadasi
,
M. H.
,
Riazi
,
R.
,
Tabejamaat
,
S.
, and
Mardani
,
A.
,
2019
, “
Effects of Preheating and CO2 Dilution on Oxy-MILD Combustion of Natural Gas
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122002
.
16.
Zhang
,
Z.
,
Li
,
X.
,
Zhang
,
L.
,
Luo
,
C.
,
Mao
,
Z.
,
Xu
,
Y.
,
Liu
,
J.
,
Liu
,
G.
, and
Zheng
,
C.
,
2019
, “
Numerical Investigation of the Effects of Different Injection Parameters on Damköhler Number in the Natural gas MILD Combustion
,”
Fuel
,
237
, pp.
60
70
.
17.
Heil
,
P.
,
Toporov
,
D.
,
Förster
,
M.
, and
Kneer
,
R.
,
2011
, “
Experimental Investigation on the Effect of O2 and CO2 on Burning Rates During Oxyfuel Combustion of Methane
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3407
3413
.
18.
Rashwan
,
S. S.
,
Abdelkader
,
B.
,
Abdalmonem
,
A.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Ibrahim
,
A. H.
,
2022
, “
Experimental and Statistical ANOVA Analysis on Combustion Stability of CH4/O2/CO2 in a Partially Premixed Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062301
.
19.
Tu
,
Y.
,
Su
,
K.
,
Liu
,
H.
,
Chen
,
S.
,
Liu
,
Z.
, and
Zheng
,
C.
,
2016
, “
Physical and Chemical Effects of CO2 Addition on CH4/H2 Flames on a Jet in Hot Coflow (JHC) Burner
,”
Energy Fuel
,
30
(
2
), pp.
1390
1399
.
20.
Dai
,
C.
,
Wang
,
B.
,
Shu
,
Z.
, and
Mi
,
J.
,
2018
, “
Thermal Characteristics of a CH4 Jet Flame in Hot Oxidant Stream: Dilution Effects of CO2 and H2O
,”
Energy Fuel
,
32
(
7
), pp.
7943
7958
.
21.
Shu
,
Z.
,
Dai
,
C.
,
Li
,
P.
, and
Mi
,
J.
,
2018
, “
Nitric Oxide of MILD Combustion of a Methane Jet Flame in Hot Oxidizer Coflow: Its Formations and Emissions Under H2O, CO2 and N2 Dilutions
,”
Fuel
,
234
, pp.
567
580
.
22.
Joo
,
S.
,
Kwak
,
S.
, and
Yoon
,
Y.
,
2020
, “
Effect of H2 Enrichment Ratio and N2/CO2 Dilution on Swirl-Stabilized Partially Premixed H2/CH4/C3H8 SNG Combustion
,”
Int. J. Hydrogen Energy
,
45
(
55
), pp.
31255
31267
.
23.
Sharma
,
S.
,
Chowdhury
,
A.
, and
Kumar
,
S.
,
2022
, “
Effect of CO2/N2 Dilution on Characteristics of Liquid Fuel Combustion in Flameless Combustion Mode
,”
Combust. Sci. Technol.
,
194
(
4
), pp.
721
744
.
24.
Launder
,
B.
, and
Spalding
,
D.
,
1973
,
Mathematical Models of Turbulence
,
Cambridge University Press
,
London
.
25.
Gran
,
I. R.
, and
Magnussen
,
B. F.
,
1996
, “
A Numerical Study of a Bluff-Body Stabilized Diffusion Flame. Part 2. Influence of Combustion Modeling and Finite-Rate Chemistry
,”
Combust. Sci. Technol.
,
119
(
1–6
), pp.
191
217
.
26.
Vascellari
,
M.
, and
Cau
,
G.
,
2012
, “
Influence of Turbulence–Chemical Interaction on CFD Pulverized Coal MILD Combustion Modeling
,”
Fuel
,
101
, pp.
90
101
.
27.
Christo
,
F. C.
, and
Dally
,
B. B.
,
2005
, “
Modeling Turbulent Reacting Jets Issuing Into a Hot and Diluted Coflow
,”
Combust. Flame
,
142
(
1–2
), pp.
117
129
.
28.
Dally
,
B. B.
,
Karpetis
,
A. N.
, and
Barlow
,
R. S.
,
2002
, “
Structure of Turbulent Nnon-Premixed Jet Flames in a Diluted Hot Coflow
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1147
1154
.
29.
He
,
D.
,
Yu
,
Y.
,
Kuang
,
Y.
, and
Wang
,
C.
,
2022
, “
Analysis of EDC Constants for Predictions of Methane MILD Combustion
,”
Fuel
,
324
, p.
124542
.
30.
Mardani
,
A.
, and
Nazari
,
A.
,
2022
, “
Dynamic Adjustment of the Eddy Dissipation Concept Model for Turbulent/Combustion Interactions in Mixed Combustion Regimes
,”
Combust. Flame
,
241
, p.
111873
.
31.
Norbert
,
P. A. R. B.
,
1993
,
Reduced Kinetic Mechanisms for Applications in Combustion Systems
, Vol.
15
,
Springer Science & Business Media
,
Berlin
.
32.
Shi
,
P.
,
Yang
,
W.
,
Wu
,
P.
,
Zhou
,
J.
, and
Liu
,
J.
,
2022
, “
Numerical Study on Combustion Performance of Propane Non-Premixed Mild in O2/CO2 Atmosphere
,”
Energy Sources. Part A, Recov., Utiliz. Environ. Effects.
ahead-of-print(ahead-of-print), pp.
1
12
.
33.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal No-Formation
,”
Prog. Energy Combust.
,
23
(
1
), pp.
81
94
.
34.
Mei
,
Z.
,
Mi
,
J.
,
Wang
,
F.
, and
Zheng
,
C.
,
2012
, “
Dimensions of CH4-Jet Flame in Hot O2/CO2 Coflow
,”
Energy Fuel
,
26
(
6
), pp.
3257
3266
.
You do not currently have access to this content.