Abstract

Small hydropower plants (SHPs) have gained international attention as a reliable and versatile renewable energy source. Unfortunately, this energy source is not used efficiently. This is because these systems utilize headwaters with lower water capacity called forebays instead of large water reservoirs like dams. Since this hinders the control of electricity generation, the headwater is either wasted before it can be converted into electricity or it is exhausted very quickly and electricity generation stops after a short time. The aim of this study is to prevent the loss of electricity generation through the efficient use of SHP headwater. For this purpose, a mathematical model was created based on two SHPs operating in tandem. The mathematical model obtained was analyzed, and forebay water level simulation graphs for electricity generation at water flowrates of 2000, 4000, 6000, and 8000 kg/h were obtained. With the help of the obtained graphs, critical wicket gate openings for maximum electricity generation at flowrates of 2000, 4000, 6000, and 8000 kg/h were calculated. The results of this study are applicable to all SHPs. These results are also promising in terms of optimizing the use of a renewable energy source.

References

1.
Asghar
,
M. M.
,
Wang
,
Z.
,
Wang
,
B.
, and
Zaidi
,
S. A. H.
,
2020
, “
Nonrenewable Energy—Environmental and Health Effects on Human Capital: Empirical Evidence From Pakistan
,”
Environ. Sci. Pollut. Res.
,
27
(
3
), pp.
2630
2646
.
2.
Infield
,
D.
, and
Freris
,
L.
,
2020
,
Renewable Energy in Power Systems
,
John Wiley and Sons
,
Hoboken, NJ
.
3.
Rashid
,
S.
,
Rana
,
S.
,
Shezan
,
S. K. A.
,
Karim
,
S. A. B.
, and
Anowerd
,
S.
,
2017
, “
Optimized Design of a Hybrid PV-Wind-Diesel Energy System for Sustainable Development at Coastal Areas in Bangladesh
,”
Environ. Prog. Sustainable Energy
,
36
(
1
), pp.
297
304
.
4.
Abbas
,
A.
,
Qandil
,
M. D.
,
Al-Haddad
,
M.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Horizontal Micro Kaplan Hydro Turbine Performance Using Multi-Disciplinary Design Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052101
.
5.
Abbas
,
A.
,
Qandil
,
M. D.
,
Al-Haddad
,
M.
,
Saravani
,
M. S.
, and
Amano
,
R. S.
,
2019
, “
Utilization of Hydroturbines in Wastewater Treatment Plants
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062011
.
6.
Abbas
,
A. I.
,
Amano
,
R. S.
,
Saravani
,
M. S.
,
Qandil
,
M. D.
, and
Sakamoto
,
T.
,
2019
, “
Optimization of Kaplan Hydroturbine at Very Low Head With Rim-Driven Generator
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111204
.
7.
Jawahara
,
C. P.
, and
Michael
,
P. A.
,
2017
, “
A Review on Turbines for Micro Hydro Power Plant
,”
Renew. Sust. Energy Rev.
,
72
(
2
), pp.
882
887
.
8.
Moran
,
E. F.
,
Lopez
,
M. C.
, and
Moore
,
N.
,
2018
, “
Sustainable Hydropower in the 21st Century
,”
Proc. Natl. Acad. Sci. U.S.A
,
115
(
47
), pp.
11891
11898
.
9.
Rahi
,
O. P.
, and
Kumar
,
A.
,
2016
, “
Economic Analysis for Refurbishment and Uprating of Hydro Power Plants
,”
Renew. Energy
,
86
(
2
), pp.
1197
1204
.
10.
Adnan
,
M.
,
Tahir
,
M. A.
,
Jamal
,
M. A.
,
Aslam
,
Z.
,
Irfan
,
T.
, and
Umer
,
M.
,
2022
, “
Design, Analysis and Fabrication of Water Turbine for Slow-Moving Water
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082102
.
11.
Mosbahi
,
M.
,
Derbel
,
M.
,
Lainef
,
M.
,
Mosbahi
,
B.
,
Driss
,
Z.
,
Arico
,
C.
, and
Tucciarelli
,
T.
,
2021
, “
Performance Study of Twisted Darrieus Hydrokinetic Turbine With Novel Blade Design
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
091302
.
12.
Grubert
,
E.
,
2020
, “
Conventional Hydroelectricity and the Future of Energy: Linking National Inventory of Dams and Energy Information Administration Data to Facilitate Analysis of Hydroelectricity
,”
Electr. J.
,
33
(
1
), p.
106692
.
13.
Stadelmann-Steffen
,
I.
,
Rieder
,
S.
, and
Strotz
,
C.
,
2020
, “
The Politics of Renewable Energy Production in a Federal Context: The Deployment of Small Hydropower in the Swiss Cantons
,”
J. Environ. Dev.
,
29
(
1
), pp.
75
98
.
14.
Azrulhisham
,
E.
, and
Azri
,
M. A.
,
2020
, “
Desilting Basin Efficiency Estimation for Run-of-River Small Hydropower Plants
,”
Int. J. Recent Technol. Eng.
,
8
(
4
).
15.
Alp
,
A.
,
Akyüz
,
A.
, and
Kucukali
,
S.
,
2020
, “
Ecological Impact Scorecard of Small Hydropower Plants in Operation: An Integrated Approach
,”
Renew. Energy
,
162
, pp.
1605
1617
.
16.
Zhang
,
C.
,
Chen
,
S.
,
Qiao
,
H.
,
Dong
,
L.
,
Huang
,
Z.
, and
Ou
,
C.
,
2020
, “
Small Hydropower Sustainability Evaluation for the Countries Along the Belt and Road
,”
Environ. Dev.
,
34
, p.
100528
.
17.
Zhang
,
Z.
,
Yang
,
X.
,
Wang
,
Z.
,
Chen
,
Z.
, and
Zheng
,
Y.
,
2020
, “
Highly Applicable Small Hydropower Microgrid Operation Strategy and Control Technology
,”
Energy Rep.
,
6
, pp.
3179
3191
.
18.
Cai
,
X.
,
Ye
,
F.
, and
Gholinia
,
F.
,
2020
, “
Application of Artificial Neural Network and Soil and Water Assessment Tools in Evaluating Power Generation of Small Hydropower Stations
,”
Energy Rep.
,
6
, pp.
2106
2118
.
19.
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2007
, “
Optimal Sizing of a Run-of-River Small Hydropower Plant
,”
Energy Convers. Manage.
,
48
(
10
), pp.
2663
2670
.
20.
Nautiyal
,
H.
,
Singal
,
S. K.
,
Varun, Sharma
,
A.
,
2011
, “
Small Hydropower for Sustainable Energy Development in India
,”
Renew. Sust. Energy Rev.
,
15
(
4
), pp.
2021
2027
.
21.
Gonzalez
,
W. G.
,
Montoya
,
O. D.
, and
Garces
,
A.
,
2020
, “
Modeling and Control of a Small Hydro-Power Plant for a DC Microgrid
,”
Electr. Power Syst. Res.
,
180
, p.
106104
.
22.
Borkowski
,
D.
,
2018
, “
Analytical Model of Small Hydropower Plant Working at Variable Speed
,”
IEEE Trans. Energy Convers.
,
33
(
2
), pp.
1886
1894
.
23.
Ardizzon
,
G.
,
Cavazzini
,
G.
, and
Pavesi
,
G.
,
2014
, “
A New Generation of Small Hydro and Pumped-Hydro Power Plants: Advances and Future Challenges
,”
Renew. Sustainable Energy Rev.
,
31
, pp.
746
761
.
24.
Yu
,
X. Z.
,
Feng
,
S.
, and
Jia
,
B. Z.
,
2012
, “
Function Contents and Standard Analysis of Green Small Hydropower Assessment
,”
China Water Power Electrif.
,
7
, pp.
1
7
.
25.
Zhang
,
L. X.
,
Pang
,
M. Y.
, and
Wang
,
C. B.
,
2014
, “
Emergy Analysis of a Small Hydropower Plant in Southwestern China
,”
Ecol. Indic.
,
38
, pp.
81
88
.
26.
Salem
,
A. R.
,
Hasan
,
A.
,
Hadi
,
A. A.
,
Hamad
,
S. A.
,
Qandil
,
M.
, and
Amano
,
R. S.
,
2022
, “
Power Generation and Oxygen Transfer Analyses for Micro Hydro-Turbine Installed in Wastewater Treatment Aeration Tank
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032102
.
27.
Hasan
,
A.
,
Salem
,
A. R.
,
Hadi
,
A. A.
,
Hamad
,
S. A.
,
Qandil
,
M.
, and
Amano
,
R. S.
,
2022
, “
Optimizing Power Reclamation of Micro Hydro Turbines in WWTPs Aeration Basins
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012109
.
28.
Jung
,
S. E.
,
Kim
,
J. Y.
,
Kang
,
Y. H.
, and
Kim
,
H. S.
,
2018
, “
Case Study: Assessment of Small Hydropower Potential Using Runoff Measurements
,”
J. Korean Solar Energy Soc.
,
38
(
4
), pp.
43
54
.
29.
Mohammad
,
M. M. Y.
,
Saeed
,
J.
, and
Hooman
,
H.
,
2019
, “
Optimal Location for Installing Small Hydropower Plant on Water Supply Pipelines
,”
Proc. Inst. Civ. Eng. Energy
,
172
(
2
), pp.
64
78
.
30.
Çengel
,
A. Y.
, and
Cimbala
,
J. M.
,
2014
,
Fluid Mechanics—Fundamentals and Applications
,
McGraw Hill
,
New York
.
You do not currently have access to this content.