Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Artificial intelligence (AI) can help improve many areas of waste management and biogas generation. The world has reached a state where waste generation is increasing daily, while an effective waste management system is essential for the sustainable development of a country. AI could be of great use in optimizing the waste management scheme by technical differentiation of all sorts and recycling techniques. AI can contribute to the improvement of waste segmentation, recycling, and disposal. Thus, by assessing availability and composition, AI can easily contribute to the selection of the most suitable feedstock for biogas generation. This paper will discuss the optimization of gasifier design, an important part of biogas production, to enhance gasification efficiency for more efficient syngas production. Several gains accrue from AI applications, and among them is the selection of feedstocks and gasifiers optimal for more efficient and sustainable waste management and use in the production of biogas systems. This review paper identifies the potential application areas in either waste management practices or biogas production and puts forward ways in which AI can be used in these areas.

References

1.
Sharma
,
K. D.
, and
Jain
,
S.
,
2019
, “
Overview of Municipal Solid Waste Generation, Composition, and Management in India
,”
J. Environ. Eng.
,
145
(
3
), p.
04018143
.
2.
Manegdeg
,
R. F.
,
Rollon
,
A.
,
Ballesteros
,
F.
Jr
,
Magdaluyo
,
E.
Jr
,
De Sales-Papa
,
L.
,
Clemente
,
E.
,
Macapinlac
,
E.
,
Ibañez
,
R.
, and
Cervera
,
R. B.
,
2022
, “
Multi-attribute Assessment of Waste-to-Energy Technologies for Medical, Industrial, and Electronic Residual Wastes
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070908
.
3.
Burra
,
K. R.
,
Fernández Hernández
,
I.
,
Castaldi
,
M. J.
,
Goff
,
S.
, and
Gupta
,
A. K.
,
2023
, “
Effect of Gypsum Waste Inclusion on Gasification of Municipal Solid Waste
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
021701
.
4.
Shahabuddin
,
M.
,
Nur Uddin
,
M.
,
Chowdhury
,
J. I.
,
Ahmed
,
S. F.
,
Uddin
,
M. N.
,
Mofijur
,
M.
, and
Uddin
,
M. A.
,
2023
, “
A Review of the Recent Development, Challenges, and Opportunities of Electronic Waste (e-Waste)
,”
Int. J. Environ. Sci. Technol.
,
20
(
4
), pp.
4513
4520
.
5.
Needhidasan
,
S.
,
Samuel
,
M.
, and
Chidambaram
,
R.
,
2014
, “
Electronic Waste—An Emerging Threat to the Environment of Urban India
,”
J. Environ. Health Sci. Eng.
,
12
(
1
), p.
36
.
6.
Wang
,
Z.
,
Guo
,
S.
,
Chen
,
G.
,
Zhang
,
M.
,
Sun
,
T.
,
Chen
,
Y.
,
Wu
,
M.
, et al
,
2023
, “
Synergistic Effects and Kinetics in Co-pyrolysis of Waste Tire With Five Agricultural Residues Using Thermogravimetric Analysis
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
121501
.
7.
Muradin
,
M.
, and
Foltynowicz
,
Z.
,
2020
, “
Potential for Producing Biogas From Agricultural Waste in Rural Plants in Poland
,”
Sustainability
,
6
(
8
), pp.
85065
85074
.
8.
Harirchi
,
S.
,
Wainaina
,
S.
,
Sar
,
T.
,
Nojoumi
,
S. A.
,
Parchami
,
M.
,
Parchami
,
M.
,
Varjani
,
S.
, et al
,
2022
, “
Microbiological Insights Into Anaerobic Digestion for Biogas, Hydrogen or Volatile Fatty Acids (VFAs): A Review
,”
Bioengineered
,
13
(
3
), pp.
6521
6557
.
9.
Bong
,
C. P. C.
,
Lim
,
L. Y.
,
Lee
,
C. T.
,
Klemeš
,
J. J.
,
Ho
,
C. S.
, and
Ho
,
W. S.
,
2017
, “
The Characterisation and Treatment of Food Waste for Improvement of Biogas Production During Anaerobic Digestion—A Review
,”
J. Cleaner Prod.
,
172
, pp.
1545
1558
.
10.
Ramakrishnan
,
A. A. M.
,
Rajesh Banu
,
J.
,
Yukesh Kannah
,
R.
,
Yogalakshmi
,
K. N.
, and
Kumar
,
G.
,
2019
, “
Biohythane Production From Food Processing Wastes—Challenges and Perspectives
,”
Bioresour. Technol.
,
298
, p.
122449
.
11.
Suryawanshi
,
S. J.
,
Shewale
,
V. C.
,
Thakare
,
R. S.
, and
Yarasu
,
R. B.
,
2021
, “
Parametric Study of Different Biomass Feedstocks Used for Gasification Process of Gasifier—A Literature Review
,”
Biomass Convers. Biorefin.
,
13
(
9
), pp.
7689
7700
.
12.
Sharma
,
P.
,
Gupta
,
B.
,
Pandey
,
M.
,
Singh Bisen
,
K.
, and
Baredar
,
P.
,
2018
, “
Downdraft Biomass Gasification: A Review on Concepts, Designs Analysis, Modelling and Recent Advances
,”
Mater. Today: Proc.
,
46
, pp.
5333
5341
.
13.
Kang
,
Y.
,
Yang
,
Q.
,
Bartocci
,
P.
,
Wei
,
H.
,
Liu
,
S. S.
,
Wu
,
Z.
,
Zhou
,
H.
,
Yang
,
H.
,
Fantozzi
,
F.
, and
Chen
,
H.
,
2020
, “
Bioenergy in China: Evaluation of Domestic Biomass Resources and the Associated Greenhouse Gas Mitigation Potentials
,”
Renew. Sustain. Energy Rev.
,
127
, p.
109842
.
14.
Shafie
,
S. M.
,
2016
, “
A Review on Paddy Residue Based Power Generation: Energy, Environment and Economic Perspective
,”
Renew. Sustain. Energy Rev.
,
59
, pp.
1089
1100
.
15.
Mostaghimi
,
K.
, and
Behnamian
,
J.
,
2023
, “
Waste Minimization Towards Waste Management and Cleaner Production Strategies: A Literature Review
,”
Environ. Dev. Sustain.
,
25
(
11
), pp.
12119
12166
.
16.
Koryś
,
K. A.
,
Latawiec
,
A. E.
,
Grotkiewicz
,
K.
, and
Kuboń
,
M.
,
2019
, “
The Review of Biomass Potential for Agricultural Biogas Production in Poland
,”
Sustainability
,
11
(
22
), p.
6515
.
17.
Naik
,
G. P.
,
Poonia
,
A. K.
, and
Chaudhari
,
P. K.
,
2021
, “
Pretreatment of Lignocellulosic Agricultural Waste for Delignification, Rapid Hydrolysis, and Enhanced Biogas Production: A Review
,”
J. Indian Chem. Soc.
,
98
(
10
), p.
100147
.
18.
Zupančič
,
M.
,
Možic
,
V.
,
Može
,
M.
,
Cimerman
,
F.
, and
Golobič
,
I.
,
2022
, “
Current Status and Review of Waste-to-Biogas Conversion for Selected European Countries and Worldwide
,”
Sustainability
,
14
(
3
), p.
1823
.
19.
Zhang
,
J.
,
Oosterveer
,
P.
,
Li
,
Y.
, and
Greene
,
M.
,
2022
, “
Bioenergy Versus Soil Improvement: Policy Coherence and Implementation Gaps in Crop Residue-Based Bioenergy Development in China
,”
Water
,
14
(
21
), p.
3527
.
20.
Wang
,
W.
,
Koslowski
,
F.
,
Nayak
,
D. R.
,
Smith
,
P.
,
Saetnan
,
E.
,
Ju
,
X.
,
Guo
,
L.
, et al
,
2014
, “
Greenhouse Gas Mitigation in Chinese Agriculture: Distinguishing Technical and Economic Potentials
,”
Global Environ. Change
,
26
, pp.
53
62
.
21.
Awogbemi
,
O.
, and
Von Kallon
,
D. V.
,
2022
, “
Valorization of Agricultural Wastes for Biofuel Applications
,”
Heliyon
,
8
(
10
), p.
10
.
22.
Nandi
,
S.
,
Ahmed
,
S.
, and
Khurpade
,
P. D.
,
2023
, “Anaerobic Digestion of Fruit and Vegetable Waste for Biogas and Other Biofuels,”
Fruit and Vegetable Waste Utilization and Sustainability
,
S. A.
Mandavgane
,
I.
Chakravarty
, and
A.
Jaiswal
, eds.,
Academic Press
,
New York
, pp.
101
119
.
23.
Haryanto
,
A.
,
Sugara
,
B. P.
,
Telaumbanua
,
M.
, and
Rosadi
,
R. A. B.
,
2018
, “
Anaerobic Co-digestion of Cow Dung and Rice Straw to Produce Biogas Using Semi-continuous Flow Digester: Effect of Urea Addition
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
147
, p.
012032
.
24.
Ibitoye
,
S. E.
,
Jen
,
T.-C.
,
Mahamood
,
R. M.
, and
Akinlabi
,
E. T.
,
2021
, “
Generation of Sustainable Energy From Agro-residues Through Thermal Pretreatment for Developing Nations: A Review
,”
Adv. Energy Sustain. Res.
,
2
(
12
), p.
2100107
.
25.
Caicedo
,
M.
,
Barros
,
J.
, and
Ordás
,
B.
,
2020
, “
Redefining Agricultural Residues as Bioenergy Feedstocks
,”
Materials.
,
9
(
8
), p.
635
.
26.
McKendry
,
P.
,
2002
, “
Energy Production From Biomass (Part 3): Gasification Technologies
,”
Bioresour. Technol.
,
83
(
1
), pp.
55
63
.
27.
Sapariya
,
D. D.
,
Patdiwala
,
U. J.
,
Panchal
,
H.
,
Ramana
,
P. V.
,
Makwana
,
J.
, and
Sadasivuni
,
K. K.
,
2021
, “
A Review on Thermochemical Biomass Gasification Techniques for Bioenergy Production
,”
Energy Sources Part A
, pp.
1
34
.
28.
McKendry
,
P.
,
2002
, “
Energy Production From Biomass (Part 1): Overview of Biomass
,”
Bioresour. Technol.
,
83
(
1
), pp.
37
46
.
29.
Abdeshahian
,
P.
,
Lim
,
J. S.
,
Ho
,
W. S.
,
Hashim
,
H.
, and
Lee
,
C. T.
,
2016
, “
Potential of Biogas Production From Farm Animal Waste in Malaysia
,”
Renew. Sustain. Energy Rev.
,
60
, pp.
714
723
.
30.
Arias
,
D. E.
,
Veluchamy
,
C.
,
Habash
,
M. B.
, and
Gilroyed
,
B. H.
,
2021
, “
Biogas Production, Waste Stabilization Efficiency, and Hygienization Potential of a Mesophilic Anaerobic Plug Flow Reactor Processing Swine Manure and Corn Stover
,”
J. Environ. Manage.
,
284
, p.
112027
.
31.
Bidart
,
C.
,
Fröhling
,
M.
, and
Schultmann
,
F.
,
2014
, “
Livestock Manure and Crop Residue for Energy Generation: Macro-assessment at a National Scale
,”
Renew. Sustain. Energy Rev.
,
38
, pp.
537
550
.
32.
Chala
,
B.
,
Oechsner
,
H.
,
Latif
,
S.
, and
Müller
,
J.
,
2018
, “
Biogas Potential of Coffee Processing Waste in Ethiopia
,”
Sustainability
,
10
(
8
), p.
2678
.
33.
Garcia
,
N. H.
,
Mattioli
,
A.
,
Gil
,
A.
,
Frison
,
N.
,
Battista
,
F.
, and
Bolzonella
,
D.
,
2019
, “
Evaluation of the Methane Potential of Different Agricultural and Food Processing Substrates for Improved Biogas Production in Rural Areas
,”
Renew. Sustain. Energy Rev.
,
112
(
1–10
), p.
122617
.
34.
Ihsanullah
,
I.
,
Alam
,
G.
,
Jamal
,
A.
, and
Shaik
,
F.
,
2023
, “
Recent Advances in Applications of Artificial Intelligence in Solid Waste Management: A Review
,”
Chemosphere
,
309
, p.
136631
.
35.
Thomaz
,
I. P. L.
,
Mahler
,
C. F.
, and
Calôba
,
L. P.
,
2023
, “
Artificial Intelligence (AI) Applied to Waste Management: A Contingency Measure to Fill Out the Lack of Information Resulting From Restrictions on Field Sampling
,”
Waste Manage. Bull.
,
1
(
3
), pp.
11
17
.
36.
Xia
,
W.
,
Jiang
,
Y.
,
Chen
,
X.
, and
Zhao
,
R.
,
2022
, “
Application of Machine Learning Algorithms in Municipal Solid Waste Management: A Mini Review
,”
Waste Manage. Res.
,
40
(
6
), pp.
609
624
.
37.
Sarc
,
R.
,
Curtis
,
A.
,
Kandlbauer
,
L.
,
Khodier
,
K.
,
Lorber
,
K. E.
, and
Pomberger
,
R.
,
2019
, “
Digitalisation and Intelligent Robotics in Value Chain of Circular Economy Oriented Waste Management—A Review
,”
Waste Manage.
,
95
, pp.
476
492
.
38.
Wilts
,
H.
,
Garcia
,
B. R.
,
Garlito
,
R. G.
,
Gómez
,
L. S.
, and
Prieto
,
E. G.
,
2022
, “
Artificial Intelligence in the Sorting of Municipal Waste as an Enabler of the Circular Economy
,”
Resources
,
10
(
4
), p.
28
.
39.
Yu
,
K. H.
,
Zhang
,
Y.
,
Li
,
D.
,
Montenegro-Marin
,
C. E.
, and
Kumar
,
P. M.
,
2021
, “
Environmental Planning Based on Reduce, Reuse, Recycle and Recover Using Artificial Intelligence
,”
Environ. Impact Assess. Rev.
,
86
, p.
106492
.
40.
Nowakowski
,
P.
,
Szwarc
,
K.
, and
Boryczka
,
U.
,
2020
, “
Combining an Artificial Intelligence Algorithm and a Novel Vehicle for Sustainable e-Waste Collection
,”
Sci. Total Environ.
,
730
, p.
138726
.
41.
Lan
,
H.
,
Bolingbroke
,
D.
,
Ng
,
K. T. W.
, and
Fallah
,
B.
,
2019
, “
Assessment of Waste Characteristics and Their Impact on GIS Vehicle Collection Route Optimization Using ANN Waste Forecasts
,”
Waste Manage.
,
88
, pp.
118
130
.
42.
Sinthiya
,
N. J.
,
Chowdhury
,
T. A.
, and
Bahalul Haque
,
A. K. M.
,
2022
, “Artificial Intelligence Based Smart Waste Management—A Systematic Review,”
Computational Intelligence Techniques for Green Smart Cities
, pp.
67
92
.
43.
Guo
,
H.-N.
,
Wu
,
S.-B.
,
Tian
,
Y.-J.
,
Zhang
,
J.
, and
Liu
,
H.-T.
,
2021
, “
Application of Machine Learning Methods for the Prediction of Organic Solid Waste Treatment and Recycling Processes: A Review
,”
Bioresour. Technol.
,
319
, p.
124114
.
44.
Mishra
,
S.
,
Jena
,
L.
,
Tripathy
,
H. K.
, and
Gaber
,
T.
,
2022
, “
Prioritized and Predictive Intelligence of Things Enabled Waste Management Model in Smart and Sustainable Environment
,”
PLoS One
,
17
(
8
), p.
0272383
.
45.
Liang
,
S.
,
Chen
,
J.
,
Guo
,
M.
,
Feng
,
D.
,
Liu
,
L.
, and
Qi
,
T.
,
2020
, “
Utilization of Pretreated Municipal Solid Waste Incineration Fly Ash for Cement-Stabilized Soil
,”
Waste Manage.
,
105
, pp.
425
432
.
46.
van Velzen
,
E. T.
,
Brouwer
,
M. T.
, and
Feil
,
A.
,
2019
, “
Collection Behaviour of Lightweight Packaging Waste by Individual Households and Implications for the Analysis of Collection Schemes
,”
Waste Manage.
,
89
, pp.
284
293
.
47.
Mahmoud
,
A. E. D.
, and
Desokey
,
O.
,
2022
, “Artificial Intelligence-Based Smart Waste Management for the Circular Economy,”
Environmental Management Technologies
,
CRC Press
,
Boca Raton, FL
, pp.
341
358
.
48.
Abu Qdais
,
H.
, and
Shatnawi
,
N.
,
2019
, “
Assessing and Predicting Landfill Surface Temperature Using Remote Sensing and an Artificial Neural Network
,”
Int. J. Remote Sens.
,
40
(
24
), pp.
9556
9571
.
49.
Azis
,
F. A.
,
Suhaimi
,
H.
, and
Abas
,
E.
,
2020
, “
Waste Classification Using Convolutional Neural Network
,”
Proceedings of the 2020 2nd International Conference on Information Technology and Computer Communications
,
Virtual
,
Aug. 12–14
, pp.
9
13
.
50.
Sakr
,
G. E.
,
Mokbel
,
M.
,
Darwich
,
A.
,
Khneisser
,
M. N.
, and
Hadi
,
A.
,
2016
, “
Comparing Deep Learning and Support Vector Machines for Autonomous Waste Sorting
,”
2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)
,
Beirut, Lebanon
,
Nov. 2–4
,
IEEE
, pp.
207
212
.
51.
Malik
,
M.
,
Sharma
,
S.
,
Uddin
,
M.
,
Chen
,
C.-L.
,
Wu
,
C.-M.
,
Soni
,
P.
, and
Chaudhary
,
S.
,
2022
, “
Waste Classification for Sustainable Development Using Image Recognition With Deep Learning Neural Network Models
,”
Sustainability
,
14
(
12
), p.
7222
.
52.
Al-Mashhadani
,
I. B.
,
2023
, “
Waste Material Classification Using Performance Evaluation of Deep Learning Models
,”
J. Intell. Syst.
,
32
(
1
), p.
20230064
.
53.
Gómez
,
J. R.
,
Pacheco
,
J.
, and
Gonzalo-Orden
,
H.
,
2015
, “
A Tabu Search Method for a Bi-objective Urban Waste Collection Problem
,”
Comput. Aided Civil Infrastruct. Eng.
,
30
(
1
), pp.
36
53
.
54.
Abdullah
,
N.
,
Al-Wesabi
,
O. A.
,
Mohammed
,
B. A.
,
Al-Mekhlafi
,
Z. G.
,
Alazmi
,
M.
,
Alsaffar
,
M.
,
Anbar
,
M.
, and
Sumari
,
P.
,
2022
, “
Integrated Approach to Achieve a Sustainable Organic Waste Management System in Saudi Arabia
,”
Foods
,
11
(
9
), p.
1214
.
55.
Raflesia
,
S. P.
, and
Pamosoaji
,
A. K.
,
2019
, “
A Novel Ant Colony Optimization Algorithm for Waste Collection Problem
,”
2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE)
,
Yogyakarta, Indonesia
,
Nov. 20–21
,
IEEE
, pp.
413
416
.
56.
Izquierdo-Horna
,
L.
,
Damazo
,
M.
, and
Yanayaco
,
D.
,
2022
, “
Identification of Urban Sectors Prone to Solid Waste Accumulation: A Machine Learning Approach Based on Social Indicators
,”
Comput. Environ. Urban Syst.
,
96
(
2022
), p.
101834
.
57.
Rutqvist
,
D.
,
Kleyko
,
D.
, and
Blomstedt
,
F.
,
2019
, “
An Automated Machine Learning Approach for Smart Waste Management Systems
,”
IEEE Trans. Ind. Inform.
,
16
(
1
), pp.
384
392
.
58.
Funch
,
O. I.
,
Marhaug
,
R.
,
Kohtala
,
S.
, and
Steinert
,
M.
,
2021
, “
Detecting Glass and Metal in Consumer Trash Bags During Waste Collection Using Convolutional Neural Networks
,”
Waste Manage.
,
119
, pp.
30
38
.
59.
Adusei
,
K. K.
,
Ng
,
K. T. W.
,
Karimi
,
N.
,
Mahmud
,
T. S.
, and
Doolittle
,
E.
,
2022
, “
Modeling of Municipal Waste Disposal Behaviors Related to Meteorological Seasons Using Recurrent Neural Network LSTM Models
,”
Ecol. Inform.
,
72
, p.
101925
.
60.
Hu
,
R.
,
Chen
,
K.
,
Chen
,
W.
,
Wang
,
Q.
, and
Luo
,
H.
,
2021
, “
Estimation of Construction Waste Generation Based on an Improved On-Site Measurement and SVM-Based Prediction Model: A Case of Commercial Buildings in China
,”
Waste Manage.
,
126
, pp.
791
799
.
61.
Wang
,
J.
,
Ma
,
D.
,
Lou
,
Y.
,
Ma
,
J.
, and
Xing
,
D.
,
2023
, “
Optimization of Biogas Production From Straw Wastes by Different Pretreatments: Progress, Challenges, and Prospects
,”
Sci. Total Environ.
,
905
, p.
166992
.
62.
Liu
,
Y.
,
Gong
,
H.
,
Shi
,
C.
,
Yuan
,
H.
,
Zuo
,
X.
,
Chang
,
Y.
, and
Li
,
X.
,
2022
, “
Modeling and Optimization of the Hydrolysis and Acidification Via Liquid Fraction of Digestate From Corn Straw by Response Surface Methodology and Artificial Neural Network
,”
J. Cleaner Prod.
,
361
, p.
132241
.
63.
Cahanap
,
D. R.
,
Mohammadpour
,
J.
,
Jalalifar
,
S.
,
Mehrjoo
,
H.
,
Norouzi-Apourvari
,
S.
, and
Salehi
,
F.
,
2023
, “
Prediction of Three-Phase Product Yield of Biomass Pyrolysis Using Artificial Intelligence-Based Models
,”
J. Anal. Appl. Pyrolysis
,
172
, p.
106015
.
64.
Wang
,
Z.
,
Peng
,
X.
,
Xia
,
A.
,
Shah
,
A. A.
,
Yan
,
H.
,
Huang
,
Y.
,
Zhu
,
X.
,
Zhu
,
X.
, and
Liao
,
Q.
,
2023
, “
Comparison of Machine Learning Methods for Predicting the Methane Production From Anaerobic Digestion of Lignocellulosic Biomass
,”
Energy
,
263
, p.
125883
.
65.
Hai
,
A.
,
Bharath
,
G.
,
Patah
,
M. F. A.
,
Daud
,
W. M. A. W.
,
Rambabu
,
K.
,
Show
,
P.
, and
Banat
,
F.
,
2023
, “
Machine Learning Models for the Prediction of Total Yield and Specific Surface Area of Biochar Derived From Agricultural Biomass by Pyrolysis
,”
Environ. Technol. Innov.
,
30
, p.
103071
.
66.
Sangeetha
,
J.
, and
Govindarajan
,
P.
,
2023
, “
Prediction of Agricultural Waste Compost Maturity Using Fast Regions With Convolutional Neural Network (R-CNN)
,”
Mater. Today: Proc
,
67.
Dominguillo-Ramírez
,
D.
,
Aburto
,
J.
,
Leon-Santiesteban
,
H. H.
, and
Martinez-Hernandez
,
E.
,
2023
, “
Neural Network Model for Predicting the Biomethane Yield in an Anaerobic Digester Using Biomass Composition Profiles
,”
Fuel
,
344
, p.
128053
.
68.
Cao
,
H.
,
Xin
,
Y.
, and
Yuan
,
Q.
,
2016
, “
Prediction of Biochar Yield From Cattle Manure Pyrolysis Via Least Squares Support Vector Machine Intelligent Approach
,”
Bioresour. Technol.
,
202
, pp.
158
164
.
69.
Gopal
,
L. C.
,
Govindarajan
,
M.
,
Kavipriya
,
M. R.
,
Mahboob
,
S.
,
Al-Ghanim
,
K. A.
,
Virik
,
P.
,
Ahmed
,
Z.
,
Al-Mulhm
,
N.
,
Senthilkumaran
,
V.
, and
Shankar
,
V.
,
2021
, “
Optimization Strategies for Improved Biogas Production by Recycling of Waste Through Response Surface Methodology and Artificial Neural Network: Sustainable Energy Perspective Research
,”
J. King Saud Univ. Sci.
,
33
(
1
), p.
101241
.
70.
De Clercq
,
D.
,
Wen
,
Z.
,
Fei
,
F.
,
Caicedo
,
L.
,
Yuan
,
K.
, and
Shang
,
R.
,
2020
, “
Interpretable Machine Learning for Predicting Biomethane Production in Industrial-Scale Anaerobic Co-digestion
,”
Sci. Total Environ.
,
712
, p.
134574
.
71.
Hatata
,
A.
,
Galal
,
O. H.
,
Said
,
N.
, and
Ahmed
,
D.
,
2021
, “
Prediction of Biogas Production From Anaerobic Co-digestion of Waste Activated Sludge and Wheat Straw Using Two-Dimensional Mathematical Models and an Artificial Neural Network
,”
Renew. Energy
,
178
, pp.
226
240
.
72.
Almomani
,
F.
,
2020
, “
Prediction of Biogas Production From Chemically Treated Co-digested Agricultural Waste Using Artificial Neural Network
,”
Fuel
,
280
, p.
118573
.
73.
Dong
,
C.
, and
Chen
,
J.
,
2019
, “
Optimization of Process Parameters for Anaerobic Fermentation of Corn Stalk Based on Least Squares Support Vector Machine
,”
Bioresour. Technol.
,
271
, pp.
174
181
.
74.
Olatunji
,
K. O.
,
Madyira
,
D. M.
,
Ahmed
,
N. A.
,
Adeleke
,
O.
, and
Ogunkunle
,
O.
,
2023
, “
Modeling the Biogas and Methane Yield From Anaerobic Digestion of Arachis Hypogea Shells With Combined Pretreatment Techniques Using Machine Learning Approaches
,”
Waste Biomass Valorization
,
14
(
4
), pp.
1123
1141
.
75.
Sonwai
,
A.
,
Pholchan
,
P.
, and
Tippayawong
,
N.
,
2023
, “
Machine Learning Approach for Determining and Optimizing Influential Factors of Biogas Production From Lignocellulosic Biomass
,”
Bioresour. Technol.
,
383
, p.
129235
.
76.
Meena
,
M.
,
Shubham
,
S.
,
Paritosh
,
K.
,
Pareek
,
N.
, and
Vivekanand
,
V.
,
2021
, “
Production of Biofuels From Biomass: Predicting the Energy Employing Artificial Intelligence Modelling
,”
Bioresour. Technol.
,
340
, p.
125642
.
77.
Mutlu
,
A. Y.
, and
Yucel
,
O.
,
2018
, “
An Artificial Intelligence Based Approach to Predicting Syngas Composition for Downdraft Biomass Gasification
,”
Energy
,
165
, pp.
895
901
.
78.
Dieringer
,
P.
,
Marx
,
F.
,
Alobaid
,
F.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2018
, “
Process Control Strategies in Chemical Looping Gasification—A Novel Process for the Production of Biofuels Allowing for Net Negative CO2 Emissions
,”
Appl. Sci.
,
10
(
12
), p.
4271
.
79.
Duque-Uribe
,
D.
,
Montiel-Bohórquez
,
N. D.
, and
Pérez
,
J. F.
,
2023
, “
Technoeconomic Analysis of a Small-Scale Downdraft Gasification-Based Cogeneration Power Plant Using Green Wastes
,”
ASME J. Energy Resour. Technol.
,
145
(
8
), p.
081401
.
80.
Zeinolabedini
,
M.
,
Pazoki
,
M.
, and
Saeid
,
P.
,
2023
, “
Optimization of Parameters That Affect Biogas Production of Anaerobic Digestion Using a Particle Swarm Algorithm
,”
Int. J. Energy Water Resour.
,
7
(
1
), pp.
29
41
.
81.
Kegl
,
T.
, and
Kovač Kralj
,
A.
,
2020
, “
Multi-objective Optimization of Anaerobic Digestion Process Using a Gradient-Based Algorithm
,”
Energy Convers. Manage.
,
226
, p.
113560
.
82.
Li
,
Y.
,
Xu
,
H.
,
Yi
,
X.
,
Zhao
,
Y.
,
Jin
,
F.
,
Chen
,
L.
, and
Hua
,
D.
,
2021
, “
Study of Two-Phase Anaerobic Digestion of Corn Stover: Focusing on the Conversion of Volatile Fatty Acids and Microbial Characteristics in UASB Reactor
,”
Ind. Crops Prod.
,
160
, p.
113097
.
83.
Neto
,
J. G.
,
Ozorio
,
L. V.
,
de Abreu
,
T. C. C.
,
Dos Santos
,
B. F.
, and
Pradelle
,
F.
,
2021
, “
Modeling of Biogas Production From Food, Fruits and Vegetables Wastes Using Artificial Neural Network (ANN)
,”
Fuel
,
285
, p.
119081
.
84.
Wang
,
Y.
,
Huntington
,
T.
, and
Scown
,
C. D.
,
2021
, “
Tree-Based Automated Machine Learning to Predict Biogas Production for Anaerobic Co-digestion of Organic Waste
,”
ACS Sustain. Chem. Eng.
,
9
(
38
), pp.
12990
13000
.
85.
Escalante
,
H.
,
Castro
,
L.
,
Gauthier-Maradei
,
P.
, and
De La Vega
,
R. R.
,
2016
, “
Spatial Decision Support System to Evaluate Crop Residue Energy Potential by Anaerobic Digestion
,”
Bioresour. Technol.
,
219
, pp.
80
90
.
86.
Jeong
,
K.
,
Abbas
,
A.
,
Shin
,
J.
,
Son
,
M.
,
Kim
,
Y. M.
, and
Cho
,
K. H.
,
2021
, “
Prediction of Biogas Production in Anaerobic Co-digestion of Organic Wastes Using Deep Learning Models
,”
Water Res.
,
205
, p.
117697
.
87.
Chiñas-Palacios
,
C.
,
Vargas-Salgado
,
C.
,
Aguila-Leon
,
J.
, and
Hurtado-Pérez
,
E.
,
2021
, “
A Cascade Hybrid PSO Feed-Forward Neural Network Model of a Biomass Gasification Plant for Covering the Energy Demand in an AC Microgrid
,”
Energy Convers. Manage.
,
232
, p.
113896
.
88.
Mikulandrić
,
R.
,
Lončar
,
D.
,
Böhning
,
D.
,
Böhme
,
R.
, and
Beckmann
,
M.
,
2014
, “
Artificial Neural Network Modelling Approach for a Biomass Gasification Process in Fixed Bed Gasifiers
,”
Energy Convers. Manage.
,
87
, pp.
1210
1223
.
89.
Lerkkasemsan
,
N.
,
2017
, “
Fuzzy Logic-Based Predictive Model for Biomass Pyrolysis
,”
Appl. Energy
,
185
, pp.
1019
1030
.
90.
Wang
,
X.
,
Wang
,
S.
,
Jin
,
B.
,
Ma
,
Z.
, and
Ling
,
X.
,
2023
, “
Modelling and Optimization of Sorption-Enhanced Biomass Chemical Looping Gasification Coupling With Hydrogen Generation System Based on Neural Network and Genetic Algorithm
,”
Chem. Eng. J.
,
473
, p.
145303
.
91.
Nassef
,
A. M.
,
Sayed
,
E. T.
,
Rezk
,
H.
,
Inayat
,
A.
,
Yousef
,
B. A.
,
Abdelkareem
,
M. A.
, and
Olabi
,
A. G.
,
2020
, “
Developing a Fuzzy-Model With Particle Swarm Optimization-Based for Improving the Conversion and Gasification Rate of Palm Kernel Shell
,”
Renew. Energy
,
166
, pp.
125
135
.
92.
Kanakavalli
,
P. B.
, and
More
,
S. R.
,
2022
, “
Determining Optimal Parameters Using Taguchi’s Design of Experiments (DOE) for Improving the Quality of Biogas Generation Process
,”
Eng. Res. Express
,
4
(
2
), p.
025020
.
93.
Yu
,
B.
,
Liu
,
X.
,
Ji
,
C.
, and
Sun
,
H.
,
2023
, “
Greenhouse Gas Mitigation Strategies and Decision Support for the Utilization of Agricultural Waste Systems: A Case Study of Jiangxi Province, China
,”
Energy
,
265
, p.
126380
.
94.
Mao
,
C.
,
Zhang
,
T.
,
Wang
,
X.
,
Feng
,
Y.
,
Ren
,
G.
, and
Yang
,
G.
,
2017
, “
Process Performance and Methane Production Optimizing of Anaerobic Co-digestion of Swine Manure and Corn Straw
,”
Sci. Rep.
,
7
(
1
), p.
9379
.
95.
Mansor
,
M. F.
,
Jamaludin
,
N. S.
, and
Tajuddin
,
H. A.
,
2021
, “
Optimization of Co-digestion Process of Food Waste and Sewage Sludge Using Artificial Neural Network and Genetic Algorithm
,”
Chem. Natl. Resour. Eng. J. (Formally known as Biol. Natl. Resour. Eng. J.)
,
5
(
2
), pp.
62
72
.
96.
Koul
,
B.
,
Yakoob
,
M.
, and
Shah
,
M. P.
,
2022
, “
Agricultural Waste Management Strategies for Environmental Sustainability
,”
Environ. Res.
,
206
, p.
112285
.
97.
Ren
,
H.
,
Jiang
,
N.
,
Wang
,
T.
,
Mubashar Omar
,
M.
,
Ruan
,
W.
, and
Ghafoor
,
A.
,
2018
, “
Enhanced Biogas Production in the Duckweed Anaerobic Digestion Process
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041805
.
98.
Sun
,
Q.
,
Li
,
H.
,
Yan
,
J.
,
Liu
,
L.
,
Yu
,
Z.
, and
Yu
,
X.
,
2015
, “
Selection of Appropriate Biogas Upgrading Technology—A Review of Biogas Cleaning, Upgrading and Utilisation
,”
Renew. Sustain. Energy Rev.
,
51
, pp.
521
532
.
99.
Rahaman
,
M. A.
,
Zhang
,
Q.
,
Shi
,
Y.
,
Zhan
,
X.
, and
Li
,
G.
,
2021
, “
Biogas Slurry Application Could Potentially Reduce N2O Emissions and Increase Crop Yield
,”
Sci. Total Environ.
,
778
, p.
146269
.
100.
Mukhtiar
,
A.
,
Mahmood
,
A.
,
Zia
,
M. A.
,
Ameen
,
M.
,
Dong
,
R.
,
Shoujun
,
Y.
,
Javaid
,
M. M.
,
Khan
,
B. A.
, and
Nadeem
,
M. A.
,
2023
, “
Role of Biogas Slurry to Reclaim Soil Properties Providing an Eco-friendly Approach for Crop Productivity
,”
Bioresour. Technol. Rep.
,
25
, p.
101716
.
101.
Van Pham
,
D.
,
Cong
,
H. D.
,
Arango
,
J.
,
Dai
,
N. T.
,
Tri
,
K. N.
,
Arévalo
,
A.
, and
Douxchamps
,
S.
,
2019
, “Greenhouse Gas Emissions From Piggery and Biogas Digesters in the Red River Delta of Vietnam,” https://hdl.handle.net/10568/107104
102.
Demirbas
,
A.
,
2010
, “
Biogas as a Renewable Energy Source—A Review
,”
Energy Convers. Manage.
,
51
(
10
), pp.
2440
2444
.
103.
Antonopoulou
,
G.
,
Gavala
,
H. N.
,
Skiadas
,
I. V.
, and
Lyberatos
,
G.
,
2015
, “
The Effect of Aqueous Ammonia Soaking Pretreatment on Methane Generation Using Different Lignocellulosic Biomasses
,”
Waste Biomass Valorization
,
6
(
3
), pp.
281
291
.
104.
Hosseinzadeh
,
A.
,
Zhou
,
J. L.
,
Li
,
X.
,
Afsari
,
M.
, and
Altaee
,
A.
,
2022
, “
Techno-economic and Environmental Impact Assessment of Hydrogen Production Processes Using Bio-waste as Renewable Energy Resource
,”
Renew. Sustain. Energy Rev.
,
156
, p.
111991
.
105.
Samer
,
M.
,
Abdelaziz
,
S.
,
Refai
,
M.
, and
Abdelsalam
,
E.
,
2020
, “
Techno-economic Assessment of Dry Fermentation in Household Biogas Units Through Co-digestion of Manure and Agricultural Crop Residues in Egypt
,”
Renew. Energy
,
149
, pp.
226
234
.
106.
Fatma
,
S.
,
Saleem
,
A.
, and
Tabassum
,
R.
,
2021
, “
Wheat Straw Hydrolysis by Using Co-cultures of Trichoderma reesei and Monascus purpureus Toward Enhanced Biodegradation of the Lignocellulosic Biomass in Bioethanol Biorefinery
,”
Biomass Convers. Biorefin.
,
11
(
3
), pp.
743
754
.
107.
Cu
,
T. T. T.
,
Nguyen
,
T. X.
,
Triolo
,
J. M.
,
Pedersen
,
L.
,
Le
,
V. D.
,
Le
,
P. D.
, and
Sommer
,
S. G.
,
2015
, “
Biogas Production From Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield
,”
Asian-Australas. J. Anim. Sci.
,
28
(
2
), pp.
280
289
.
108.
Nautiyal
,
S.
,
Goswami
,
M.
,
Manasi
,
S.
,
Bez
,
P.
,
Bhaskar
,
K.
, and
Imran Khan
,
Y. D.
,
2015
, “
Potential of Manure Based Biogas to Replace Conventional and Non-conventional Fuels in India: Environmental Assessment for Emission Reduction
,”
Manage. Environ. Qual.
,
26
(
1
), pp.
3
20
.
109.
Zaied
,
B. K.
,
Rashid
,
M.
,
Nasrullah
,
M.
,
Bari
,
B. S.
,
Zularisam
,
A. W.
,
Singh
,
L.
,
Kumar
,
D.
, and
Krishnan
,
S.
,
2020
, “
Prediction and Optimization of Biogas Production From POME Co-digestion in Solar Bioreactor Using Artificial Neural Network Coupled With Particle Swarm Optimization (ANN-PSO)
,”
Biomass Convers. Biorefin.
,
13
(
1
), pp.
73
88
.
110.
Enitan
,
A. M.
,
Adeyemo
,
J.
,
Swalaha
,
F. M.
,
Kumari
,
S.
, and
Bux
,
F.
,
2017
, “
Optimization of Biogas Generation Using Anaerobic Digestion Models and Computational Intelligence Approaches
,”
Rev. Chem. Eng.
,
33
(
3
), pp.
309
335
.
111.
Samadi
,
S. H.
,
Ghobadian
,
B.
,
Nosrati
,
M.
, and
Rezaei
,
M.
,
2023
, “
Investigation of Factors Affecting Performance of a Downdraft Fixed Bed Gasifier Using Optimized MLP Neural Networks Approach
,”
Fuel
,
333
, p.
126249
.
112.
Baetge
,
S.
, and
Kaltschmitt
,
M.
,
2018
, “
Rice Straw and Rice Husks as Energy Sources—Comparison of Direct Combustion and Biogas Production
,”
Biomass Convers. Biorefin.
,
8
(
3
), pp.
719
737
.
113.
Chen
,
G.
,
Gao
,
K.
,
Yan
,
B.
,
Dan
,
Z.
,
Zhou
,
W.
, and
Cheng
,
Z.
,
2018
, “
Estimation and Emissions From Crop Straw and Animal Dung in Tibet
,”
Sci. Total Environ.
,
631
, pp.
1038
1045
.
114.
Asgher
,
U.
,
Ruiz
,
J. A.
,
Gutiérrez-Gualotuña
,
E. R.
,
Ayaz
,
Y.
,
Sajid
,
M.
,
Khalil
,
K.
, and
Ali
,
S.
,
2021
, “
Mathematical Modeling and Optimization of Downdraft Gasifiers Using Artificial Neural Networks (ANN) and Stochastic Programming Techniques
,”
Advances in Neuroergonomics and Cognitive Engineering: Proceedings of the AHFE 2020 Virtual Conferences on Neuroergonomics and Cognitive Engineering, and Industrial Cognitive Ergonomics and Engineering Psychology
,
July 16–20
,
Springer International Publishing
,
New York
, pp.
375
384
.
115.
Tezer
,
O.
,
Karabag
,
N.
,
Utku Ozturk
,
M.
,
Ongen
,
A.
, and
Ayol
,
A.
,
2022
, “
Comparison of Green Waste Gasification Performance in Updraft and Downdraft Fixed Bed Gasifiers
,”
Int. J. Hydrogen Energy
,
47
(
74
), pp.
31864
31876
.
116.
Kim
,
J. Y.
,
Kim
,
D.
,
Li
,
Z. J.
,
Dariva
,
C.
,
Cao
,
Y.
, and
Ellis
,
N.
,
2023
, “
Predicting and Optimizing Syngas Production From Fluidized Bed Biomass Gasifiers: A Machine Learning Approach
,”
Energy
,
263
, p.
125900
.
117.
Yu
,
J.
, and
Smith
,
J. D.
,
2018
, “
Validation and Application of a Kinetic Model for Biomass Gasification Simulation and Optimization in Updraft Gasifiers
,”
Chem. Eng. Process. Process Intensif.
,
125
, pp.
214
226
.
118.
Kaniapan
,
S.
,
Pasupuleti
,
J.
,
Nesan
,
K. P.
,
Abubackar
,
H. N.
,
Umar
,
H. A.
,
Oladosu
,
T. L.
,
Bello
,
S. R.
, and
Rene
,
E. R.
,
2022
, “
A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-economic Assessment
,”
Int. J. Environ. Res. Public Health
,
19
(
6
), p.
3427
.
119.
Krzywanski
,
J.
,
Fan
,
H.
,
Feng
,
Y.
,
Shaikh
,
A. R.
,
Fang
,
M.
, and
Wang
,
Q.
,
2018
, “
Genetic Algorithms and Neural Networks in Optimization of Sorbent Enhanced H2 Production in FB and CFB Gasifiers
,”
Energy Convers. Manage.
,
171
, pp.
1651
1661
.
120.
Musharavati
,
F.
,
Khoshnevisan
,
A.
,
Alirahmi
,
S. M.
,
Ahmadi
,
P.
, and
Khanmohammadi
,
S.
,
2022
, “
Multi-objective Optimization of a Biomass Gasification to Generate Electricity and Desalinated Water Using Grey Wolf Optimizer and Artificial Neural Network
,”
Chemosphere
,
287
, p.
131980
.
121.
Roy
,
P. C.
,
Datta
,
A.
, and
Chakraborty
,
N.
,
2013
, “
An Assessment of Different Biomass Feedstocks in a Downdraft Gasifier for Engine Application
,”
Fuel
,
106
, pp.
864
868
.
122.
Li
,
J.
,
Xu
,
K.
,
Yao
,
X.
, and
Chen
,
S.
,
2021
, “
Prediction and Optimization of Syngas Production From Steam Gasification: Numerical Study of Operating Conditions and Biomass Composition
,”
Energy Convers. Manage.
,
236
, p.
114077
.
123.
Awais
,
M.
,
Li
,
W.
,
Arshad
,
A.
,
Haydar
,
Z.
,
Yaqoob
,
N.
, and
Hussain
,
S.
,
2018
, “
Evaluating Removal of Tar Contents in Syngas Produced From Downdraft Biomass Gasification System
,”
Int. J. Green Energy
,
15
(
12
), pp.
724
731
.
124.
Elmaz
,
F.
,
Yücel
,
Ö.
, and
Mutlu
,
A. Y.
,
2020
, “
Predictive Modeling of Biomass Gasification With Machine Learning-Based Regression Methods
,”
Energy
,
191
, p.
116541
.
125.
Shahbaz
,
M.
,
Taqvi
,
S. A. A.
,
Inayat
,
M.
,
Inayat
,
A.
,
Sulaiman
,
S. A.
,
McKay
,
G.
, and
Al-Ansari
,
T.
,
2020
, “
Air Catalytic Biomass (PKS) Gasification in a Fixed-Bed Downdraft Gasifier Using Waste Bottom Ash as Catalyst With NARX Neural Network Modelling
,”
Comput. Chem. Eng.
,
142
, p.
107048
.
126.
Basha
,
C. A.
, and
Anand
,
B.
,
2019
, “
Prediction of Syngas Composition From Biomass Gasification Using Artificial Neural Network and Genetic Algorithm
,”
Energy Sources Part A
,
41
(
21
), pp.
2601
2618
.
127.
González
,
C. A. D.
,
de Oliveira
,
D. C.
,
Yepes
,
D. M.
,
Pacheco
,
L. E.
, and
Silva
,
E. E.
,
2023
, “
Aspen Plus Model of a Downdraft Gasifier for Lignocellulosic Biomass Adjusted by Principal Component Analysis
,”
Energy Convers. Manage.
,
296
, p.
117570
.
128.
Yucel
,
O.
,
Aydin
,
E. S.
, and
Sadikoglu
,
H.
,
2019
, “
Comparison of the Different Artificial Neural Networks in Prediction of Biomass Gasification Products
,”
Int. J. Energy Res.
,
43
(
11
), pp.
5992
6003
.
129.
Kardani
,
N.
,
Zhou
,
A.
,
Nazem
,
M.
, and
Lin
,
X.
,
2021
, “
Modelling of Municipal Solid Waste Gasification Using an Optimised Ensemble Soft Computing Model
,”
Fuel
,
289
, pp.
119903
.
You do not currently have access to this content.