Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Low-concentration coalbed methane is an efficient and clean unconventional natural gas with abundant reserves. It can greatly lessen the problem of energy scarcity when used to produce combustion power. Nevertheless, the engine finds it challenging to burn low-concentration coalbed methane directly due to its low and fluctuating CH4 concentration. This study suggests using a hydrogen jet to ignite low-concentration coalbed methane. The simulation method is used in this article. To investigate the effects of various ignition injection strategies on the combustion characteristics of low-concentration coalbed methane ignited by a hydrogen jet, a constant volume bomb model was developed. The results show that when the ignition and hydrogen injection interval is 2.0 ms, the cold jet of hydrogen does not burn immediately when it reaches the premixed flame, and there is a transition process from the premixed flame to the jet flame. The larger the interval between ignition and hydrogen injection, the more waste gas is produced after the premixed flame combustion, which has a certain inhibition effect on the formation of the jet flame. With the decrease in the interval between ignition and hydrogen injection, the combustion duration is obviously shortened. Therefore, the earlier hydrogen is involved in the ignition, the faster the combustion speed.

References

1.
Farzaneh
,
H.
,
Fahimi
,
M.
, and
Saboohi
,
Y.
,
2016
, “
Optimal Power Generation From Low Concentration Coal Bed Methane in Iran
,”
Energy Sources, Part A: Recov., Utiliz. Environ. Eff.
,
38
(
4
), pp.
590
596
.
2.
Zhuravleva
,
N. V.
,
Potokina
,
R. R.
,
Ismagilov
,
Z. R.
, and
Kudinov
,
E. V.
,
2015
, “
Composition of Gas From the Coal Beds of the Taldinskoe Deposit
,”
Solid Fuel Chem.
,
49
(
2
), pp.
59
65
.
3.
Ward
,
C.
,
Goldstein
,
H.
,
Maurer
,
R.
,
Thimsen
,
D.
,
Sheets
,
B. J.
,
Hobbs
,
R.
,
Isgrigg
,
F.
, et al
,
2020
, “
Making Coal Relevant for Small Scale Applications: Modular Gasification for Syngas/Engine Chp Applications in Challenging Environments
,”
Fuel
,
267
(
20
), p.
117303
.
4.
Olaniyi
,
O.
,
Incer-Valverde
,
J.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2023
, “
Exergetic and Economic Evaluation of Natural Gas/Hydrogen Blends for Power Generation
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), p.
062701
.
5.
Yan
,
Y.
,
Liu
,
Z.
, and
Liu
,
J.
,
2023
, “
An Evaluation of the Conversion of Gasoline and Natural Gas Spark Ignition Engines to Ammonia/Hydrogen Operation From the Perspective of Laminar Flame Speed
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012302
.
6.
Roy
,
M. K.
,
Kawahara
,
N.
,
Tomita
,
E.
, and
Fujitani
,
T.
,
2013
, “
Jet-Guided Combustion Characteristics and Local Fuel Concentration Measurements in a Hydrogen Direct-Injection Spark-Ignition Engine
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2977
2984
.
7.
Tutak
,
W.
,
Grab-Rogaliński
,
K.
, and
Jamrozik
,
A.
,
2020
, “
Combustion and Emission Characteristics of a Biodiesel-Hydrogen Dual-Fuel Engine
,”
Appl. Sci.
,
10
(
3
), pp.
1082
1096
.
8.
Subramanian
,
B.
, and
Thangavel
,
V.
,
2020
, “
Experimental Investigations on Performance, Emission and Combustion Characteristics of Diesel-Hydrogen and Diesel-HHO Gas in a Dual Fuel CI Engine
,”
Int. J. Hydrogen Energy
,
45
(
46
), pp.
25479
25492
.
9.
Mousavi
,
S. M.
,
Kamali
,
R.
,
Sotoudeh
,
F.
,
Karimi
,
N.
, and
Jeung
,
I.-S.
,
2020
, “
Numerical Investigation of the Effects of Swirling Hot Co-Flow on Mild Combustion of a Hydrogen–Methane Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112301
.
10.
Yip
,
H. L.
,
Srna
,
A.
,
Yuen
,
A. C. Y.
,
Kook
,
S.
,
Taylor
,
R. A.
,
Yeoh
,
G. H.
,
Medwell
,
P. R.
, and
Chan
,
Q. N.
,
2019
, “
A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion
,”
Appl. Sci.
,
9
(
22
), pp.
4842
4872
.
11.
Hong
,
C.
,
Ji
,
C.
,
Wang
,
S.
,
Xin
,
G.
,
Wang
,
Z.
,
Meng
,
H.
, and
Yang
,
J.
,
2023
, “
Assessment of a Synergistic Control of Intake and Exhaust VVT for Airflow Exchange, Combustion, and Emissions in a Di Hydrogen Engine
,”
Int. J. Hydrogen Energy
,
48
(
53
), pp.
20495
20506
.
12.
Kalam
,
M. A.
, and
Masjuki
,
H. H.
,
2011
, “
An Experimental Investigation of High Performance Natural Gas Engine With Direct Injection
,”
Energy
,
36
(
5
), pp.
3563
3571
.
13.
Rizvi
,
M. S.
,
2021
, “
Detailed Numerical Comparison of Laminar Burning Speed of Stratified Hydrogen–Air and Methane–Air Mixture With Corresponding Homogeneous Mixture Using Open-Source Code
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102303
.
14.
Han
,
S. H.
,
Chang
,
D.
, and
Kim
,
J. S.
,
2013
, “
Release Characteristics of Highly Pressurized Hydrogen Through a Small Hole
,”
Int. J. Hydrogen Energy
,
38
(
8
), pp.
3503
3512
.
15.
Ren
,
Z.
,
Giannissi
,
S.
,
Venetsanos
,
A. G.
,
Friedrich
,
A.
,
Kuznetsov
,
M.
,
Jordan
,
T.
, and
Wen
,
J. X.
,
2022
, “
The Evolution and Structure of Ignited High-Pressure Cryogenic Hydrogen Jets
,”
Int. J. Hydrogen Energy
,
47
(
67
), pp.
29184
29194
.
16.
Lei
,
Y.
,
Zhang
,
A.
,
Zhou
,
D.
,
Qiu
,
T.
, and
Qin
,
C.
,
2022
, “
Experimental Investigation of High-Pressure Hydrogen Gas Jet Impingement Characteristics of Single-Hole Cylindrical Injector
,”
Energy Sci. Eng.
,
11
(
2
), pp.
502
512
.
17.
Yadav
,
V. S.
,
Soni
,
S. L.
, and
Sharma
,
D.
,
2014
, “
Engine Performance of Optimized Hydrogen-Fueled Direct Injection Engine
,”
Energy
,
65
, pp.
116
122
.
18.
Macias-Bobadilla
,
G.
,
Becerra-Ruiz
,
J. D.
,
Estévez-Bén
,
A. A.
, and
Rodríguez-Reséndiz
,
J.
,
2020
, “
Fuzzy Control-Based System Feed-Back by OBD-II Data Acquisition for Complementary Injection of Hydrogen Into Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
45
(
51
), pp.
26604
26612
.
19.
Park
,
C.
,
Kim
,
Y.
,
Oh
,
S.
,
Oh
,
J.
,
Choi
,
Y.
,
Baek
,
H.
,
Lee
,
S. W.
, and
Lee
,
K.
,
2022
, “
Effect of Fuel Injection Timing and Injection Pressure on Performance in a Hydrogen Direct Injection Engine
,”
Int. J. Hydrogen Energy
,
47
(
50
), pp.
21552
21564
.
20.
Fakhari
,
A. H.
,
Shafaghat
,
R.
, and
Jahanian
,
O.
,
2020
, “
Numerical Simulation of a Naturally Aspirated Natural Gas/Diesel RCCI Engine for Investigating the Effects of Injection Timing on the Combustion and Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072301
.
21.
Fieseler
,
K.
,
Linker
,
T.
,
Patterson
,
M.
,
Rem
,
D.
, and
Jacobs
,
T. J.
,
2019
, “
Estimating Laminar Flame Speed and Ignition Delay for a Series of Natural Gas Mixtures at IC Engine-Relevant Conditions
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062301
.
22.
Xie
,
F.
,
Li
,
X.
,
Wang
,
X.
,
Su
,
Y.
, and
Hong
,
W.
,
2013
, “
Research on Using EGR and Ignition Timing to Control Load of a Spark-Ignition Engine Fueled With Methanol
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1084
1091
.
23.
Zareei
,
J.
,
Rohani
,
A.
,
Mahmood
,
W.
, and
Abdullah
,
S.
,
2019
, “
Effect of Ignition Timing and Hydrogen Fraction in Natural Gas Blend on Performance and Exhaust Emissions in a DI Engine
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
44
(
3
), pp.
737
747
.
24.
Zareei
,
J.
, and
Ghadamkheir
,
K.
,
2022
, “
The Effects of Variable Excess Air Ratio and Ignition Timing on the Performance and Exhaust Emissions in a Direct Injection Hydrogen-CNG Fueled Engine
,”
Int. J. Engine Res.
,
24
(
5
), pp.
2039
2050
.
25.
Zhuoxiong
,
Z.
, and
Ruibing
,
W.
,
2023
, “
Investigation of Turbulent Flow in Vortex Cold-Wall Combustion Chamber Under Different Spark Ignition Times
,”
Proc. Inst. Mech. Eng.
,
237
(
5
), pp.
1028
1038
.
26.
Lu
,
C.
,
Song
,
E.
,
Xu
,
C.
,
Ni
,
Z.
,
Yang
,
X.
, and
Dong
,
Q.
,
2023
, “
Analysis of Performance of Passive Pre-Chamber on a Lean-Burn Natural Gas Engine Under Low Load
,”
J. Marin. Sci. Eng.
,
11
(
3
), pp.
596
596
.
27.
Chen
,
H.
,
He
,
J.
, and
Zhong
,
X.
,
2019
, “
Engine Combustion and Emission Fuelled With Natural Gas: A Review
,”
J. Energy Inst.
,
92
(
4
), pp.
1123
1136
.
28.
Gong
,
C.
,
Huang
,
K.
,
Jia
,
J.
,
Su
,
Y.
,
Gao
,
Q.
, and
Liu
,
X.
,
2011
, “
Regulated Emissions From a Direct-Injection Spark-Ignition Methanol Engine
,”
Energy
,
36
(
5
), pp.
3379
3387
.
29.
Dinesh
,
M. H.
, and
Kumar
,
G. N.
,
2023
, “
Experimental Investigation of Variable Compression Ratio and Ignition Timing Effects on Performance, Combustion, and Nox Emission of an Ammonia/Hydrogen-Fuelled Si Engine
,”
Int. J. Hydrogen Energy
,
48
(
90
), pp.
35139
35152
.
30.
Zhen
,
X.
,
Wang
,
Y.
,
Xu
,
S.
, and
Zhu
,
Y.
,
2013
, “
Study of Knock in a High Compression Ratio Spark-Ignition Methanol Engine by Multi-Dimensional Simulation
,”
Energy
,
50
, pp.
150
159
.
31.
Kwak
,
K. H.
,
Jung
,
D.
,
Park
,
H.
,
Paeng
,
J.
, and
Hwang
,
K.
,
2021
, “
Knock Detection in a Quasi-Dimensional Si Combustion Simulation Using Ignition Delay and Knock Combustion Modeling
,”
Fuel
,
285
(
25
), pp.
119195
119208
.
32.
Kanth
,
S.
,
Ananad
,
T.
,
Debbarma
,
S.
, and
Das
,
B.
,
2021
, “
Effect of Fuel Opening Injection Pressure and Injection Timing of Hydrogen Enriched Rice Bran Biodiesel Fuelled in CI Engine
,”
Int. J. Hydrogen Energy
,
46
(
56
), pp.
28789
28800
.
33.
Balu
,
J. S.
, and
Karunamurthy
,
2023
, “
Effect of Excess Air Ratio and Ignition Timing on Performance, Emission and Combustion Characteristics of High Speed Hydrogen Engine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
1161
(
1
), pp.
1
11
.
34.
Yun
,
H.
,
Bu
,
Z.
,
Yang
,
Z.
,
Wang
,
L.
, and
Zhang
,
B.
,
2023
, “
Optimization of Fuel Injection Timing and Ignition Timing of Hydrogen Fueled SI Engine Based on DOE-MPGA
,”
Int. J. Hydrogen Energy
,
48
(
25
), pp.
9462
9473
.
35.
Wei
,
X.
,
Qian
,
Y.
,
Gong
,
Z.
,
Meng
,
S.
,
Sun
,
Y.
,
Zhang
,
Y.
, and
Wang
,
T.
,
2024
, “
Investigation on the Combined Influence Mechanism of Port Water Injection Timing, Injection Pressure and Ignition Timing on Natural Gas Engine Performance Based on the Taguchi Method
,”
Fuel
,
357
(
10
), p. 130064.
36.
Zareei
,
J.
, and
Kakaee
,
A. H.
,
2013
, “
Study and the Effects of Ignition Timing on Gasoline Engine Performance and Emissions
,”
Eur. Transp. Res. Rev.
,
5
(
2
), pp.
109
116
.
37.
Wang
,
J.
,
Huang
,
Z.
,
Miao
,
H.
,
Wang
,
X.
, and
Jiang
,
D.
,
2008
, “
Study of Cyclic Variations of Direct-Injection Combustion Fueled With Natural Gas–Hydrogen Blends Using a Constant Volume Vessel
,”
Int. J. Hydrogen Energy
,
33
(
24
), pp.
7580
7591
.
38.
Shang
,
Z.
,
Yu
,
X.
,
Shi
,
W.
,
Huang
,
S.
,
Li
,
G.
,
Guo
,
Z.
, and
He
,
F.
,
2019
, “
Numerical Research on Effect of Hydrogen Blending Fractions on Idling Performance of an N-Butanol Ignition Engine With Hydrogen Direct Injection
,”
Fuel
,
258
, p.
116082
.
39.
Perumal
,
T. M.
,
Krishna
,
S. M.
,
Tallam
,
S. S.
, and
Gunawan
,
R.
,
2013
, “
Reduction of Kinetic Models Using Dynamic Sensitivities
,”
Comput. Chem. Eng.
,
56
(
24
), pp.
37
45
.
40.
Lin
,
H.
,
Chen
,
G.
,
Wu
,
F.
,
Li
,
H.
, and
Chao
,
Y.
,
2019
, “
An Experimental and Numerical Study on Supported Ultra-Lean Methane Combustion
,”
Energies
,
12
(
11
), pp.
2168
2186
.
41.
Mansor
,
M. R. A.
,
Nakao
,
S.
,
Nakagami
,
K.
,
Shioji
,
M.
, and
Kato
,
A.
,
2012
, “
Ignition Characteristics of Hydrogen Jets in an Argon-Oxygen Atmosphere
,”
SAE Technical Paper Series
,
48
(
25
), pp.
7177
7191
.
You do not currently have access to this content.