Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The vertical-axis Savonius wind rotor is known for its design simplicity, better starting qualities, and direction independency despite its inferior efficiency when measured against certain other types of vertical-axis wind rotors. Despite a plethora of research work on Savonius rotors, an in-depth analysis of Reynolds number (Re) on aerodynamic and power coefficients of the Savonius rotors is scarce. This paper aims at exploring the influence of Re on the performance of a novel parabolic blade profile through unsteady two-dimensional (2D) computation. The Reynolds-averaged Navier–Stokes (RANS) equations are modeled using the ansys fluent by adopting a shear stress transport (SST) k–ω turbulence model. The computational results of the novel blade profile are then compared and analyzed with an established semicircular blade profile to draw some meaningful insights into the aerodynamic performance. In the tested range of Re = 5.3 × 104–10.6 × 104, the novel parabolic blade profile outperformed the semicircular blade profile in terms of aerodynamic and performance coefficients.

References

1.
Zecca
,
A.
, and
Chiari
,
L.
,
2010
, “
Fossil-Fuel Constraints on Global Warming
,”
Energy Policy
,
38
(
1
), pp.
1
3
.
2.
Derakhshan
,
S.
,
Tavaziani
,
A.
, and
Kasaeian
,
N.
,
2015
, “
Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051210
.
3.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
4.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
5.
Islam
,
A. K. M. S.
,
Islam
,
M. Q.
,
Razzaque
,
M. M.
, and
Ashraf
,
R.
,
1995
, “
Static Torque and Drag Characteristics of an S-Shaped Savonius Rotor and Prediction of Dynamic Characteristics
,”
Wind Eng.
,
19
(
6
), pp.
363
370
.
6.
Mohan
,
M.
, and
Saha
,
U. K.
,
2024
, “
Evolving a Novel Blade Shape of a Savonius Wind Rotor Using an Optimization Technique Coupled With Numerical Simulations and Wind Tunnel Tests
,”
ASME J. Energy Resour. Technol.
,
146
(
4
), p.
041301
.
7.
Mari
,
M.
,
Venturini
,
M.
, and
Beyene
,
A.
,
2017
, “
A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
061202
.
8.
Ross
,
I.
, and
Altman
,
A.
,
2011
, “
Wind Tunnel Blockage Corrections: Review and Application to Savonius Vertical-Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
5
), pp.
523
538
.
9.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
101201
.
10.
Sharma
,
K. K.
,
Gupta
,
R.
, and
Biswas
,
A.
,
2014
, “
Performance Measurement of a Two Stage, Two-Bladed Savonius Rotor
,”
Int. J. Renew. Energy Res.
,
4
(
1
), pp.
115
121
.
11.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
16
(
5
), pp.
3054
3064
.
12.
Battisti
,
L.
,
Zanne
,
L.
,
Dell’Anna
,
S.
,
Dossena
,
V.
,
Persico
,
G.
, and
Paradiso
,
B.
,
2011
, “
Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large-Scale Wind Tunnel
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031201
.
13.
Menet
,
J. L.
,
2004
, “
A Double-Step Savonius Rotor for Local Production of Electricity: A Design Study
,”
Renew. Energy
,
29
(
11
), pp.
1843
1862
.
14.
Altan
,
B. D.
, and
Atılgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3425
3432
.
15.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell’Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
16.
Savonius
,
S. J.
,
1931
, “
The S-Rotor and Its Applications
,”
Mech. Eng.
,
53
(
5
), pp.
333
338
.
17.
Akwa
,
J. V.
,
Junior
,
G. A. S.
, and
Petry
,
A. P.
,
2012
, “
Discussion on the Verification of the Overlap Ratio Influence on Performance Coefficients of a Savonius Wind Rotor Using Computational Fluid Dynamics
,”
Renew. Energy
,
38
(
1
), pp.
141
149
.
18.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
.
19.
Rogowski
,
K.
, and
Maroński
,
R.
,
2015
, “
CFD Computation of the Savonius Rotor
,”
J. Theor. Appl. Mech.
,
53
(
1
), pp.
37
45
.
20.
Manwell
,
J. F.
,
Mcgowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
, 2nd ed.,
John Wiley & Sons Limited
,
Sussex, UK
.
21.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng. Part A
,
227
(
4
), pp.
528
542
.
22.
Gavalda
,
J.
,
Massons
,
J.
, and
Giaz
,
F.
,
1991
, “
Drag and Lift Coefficient of the Savonius Wind Machine
,”
Wind Eng.
,
15
(
5
), pp.
240
246
.
23.
Zhou
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renew. Energy
,
51
, pp.
373
381
.
24.
Talukdar
,
P. K.
,
Sardar
,
A.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Parametric Analysis of Model Savonius Hydrokinetic Turbines Through Experimental and Computational Investigations
,”
Energy Convers. Manage.
,
158
, pp.
36
49
.
25.
Chauvin
,
A.
, and
Benghrib
,
D.
,
1989
, “
Drag and Lift Coefficients Evolution of a Savonius Rotor
,”
Exp. Fluids
,
8
(
1–2
), pp.
118
120
.
26.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
27.
Irabu
,
K.
, and
Roy
,
J. N.
,
2011
, “
Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
653
659
.
28.
Jaohandy
,
P.
,
McTavish
,
S.
,
Garde
,
F.
, and
Bastide
,
A.
,
2013
, “
An Analysis of the Transient Forces Acting on Savonius Rotors With Different Aspect Ratios
,”
Renew. Energy
,
55
, pp.
286
295
.
29.
Nasef
,
M. H.
,
El-Askary
,
W. A.
,
Abdel-Hamid
,
A. A.
, and
Gad
,
H. E.
,
2013
, “
Evaluation of Savonius Rotor Performance: Static and Dynamic Studies
,”
J. Wind Eng. Ind. Aerodyn.
,
123
, pp.
1
11
.
30.
Kolekar
,
N.
, and
Banerjee
,
A.
,
2015
, “
Performance Characterization and Placement of a Marine Hydrokinetic Turbine in a Tidal Channel Under Boundary Proximity and Blockage Effects
,”
Appl. Energy
,
148
, pp.
121
133
.
31.
Aliferis
,
A. D.
,
Jessen
,
M. S.
,
Bracchi
,
T.
, and
Hearst
,
R. J.
,
2019
, “
Performance and Wake of a Savonius Vertical-Axis Wind Turbine Under Different Incoming Conditions
,”
Wind Energy
,
22
(
9
), pp.
1260
1273
.
32.
McTavish
,
S.
,
Feszty
,
D.
, and
Nitzsche
,
F.
,
2013
, “
Evaluating Reynolds Number Effects in Small-Scale Wind Turbine Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
120
, pp.
81
90
.
33.
Le
,
H.
, and
Le
,
D. J.
,
2020
, “
Low Reynolds Number Effects on Aerodynamic Loads of a Small Scale Wind Turbine
,”
Renew. Energy
,
154
, pp.
1283
1293
.
34.
Bourhis
,
M.
,
Pereira
,
M.
, and
Ravelet
,
F.
,
2023
, “
Experimental Investigation of the Effects of the Reynolds Number on the Performance and Near Wake of a Wind Turbine
,”
Renew. Energy
,
209
, pp.
63
70
.
35.
Roy
,
S.
, and
Ducoin
,
A.
,
2016
, “
Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
121
, pp.
281
296
.
36.
Alom
,
N.
,
Borah
,
B.
, and
Saha
,
U. K.
,
2018
, “
An Insight Into the Drag and Lift Characteristics of Modified Bach and Benesh Profiles of Savonius Rotor
,”
Energy Procedia
,
144
, pp.
50
56
.
37.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Performance Tests on Helical Savonius Rotors
,”
Renew. Energy
,
34
(
3
), pp.
521
529
.
38.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single-Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
39.
Chen
,
L.
,
Chen
,
J.
,
Xu
,
H.
,
Yang
,
H.
,
Ye
,
C.
, and
Liu
,
D.
,
2016
, “
Wind Tunnel Investigation on the Two- and Three-Blade Savonius Rotor With Central Shaft at Different Gap Ratio
,”
J. Renew. Sustain. Energy
,
8
(
1
), p.
013303
.
40.
Kumar
,
A.
, and
Saini
,
R. P.
,
2017
, “
Performance Analysis of a Savonius Hydrokinetic Turbine Having Twisted Blades
,”
Renew. Energy
,
108
, pp.
502
522
.
41.
Mohan
,
M.
, and
Saha
,
U. K.
,
2023
, “
Computational Study of a Newly Developed Parabolic Blade Profile of a Savonius Wind Rotor
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
10
), p.
548
.
42.
Lomax
,
H.
,
Pulliam
,
T. H.
,
Zingg
,
D. W.
, and
Kowalewski
,
T. A.
,
2002
, “
Fundamentals of Computational Fluid Dynamics
,”
ASME Appl. Mech. Rev
,
55
(
4
), pp.
B61
B61
.
43.
ANSYS Inc
,
2011
,
ANSYS Fluent Theory Guide
,
ANSYS Inc
,
Canonsburg, PA
, pp.
724
746
.
44.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
.
45.
Mohan
,
M.
, and
Saha
,
U. K.
,
2021
, “
Overlap Ratio as the Design Variable for Maximizing the Efficiency of a Savonius Wind Rotor: An Optimization Approach
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol. 85642, p.
V08BT08A025
, Paper No. IMECE2021-69930.
46.
Alom
,
N.
,
Kolaparthi
,
S. C.
,
Gadde
,
S. C.
, and
Saha
,
U. K.
,
2016
, “
Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations
,”
ASME 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Jun. 19–24
,
Busan, South Korea
, Paper No. OMAE2016-55095.
47.
Emmanuel
,
B.
, and
Jun
,
W.
,
2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME J. Solar Energy Eng.
,
133
(
4
), p.
044503
.
48.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2022
, “
On the Application of Machine Learning in Savonius Wind Turbine Technology: An Estimation of Turbine Performance Using Artificial Neural Network and Genetic Expression Programming
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061301
.
49.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051201
.
50.
Song
,
C.
,
Zheng
,
Y.
,
Zhao
,
Z.
,
Zhang
,
Y.
,
Li
,
C.
, and
Jiang
,
H.
,
2015
, “
Investigation of Meshing Strategies and Turbulence Models of Computational Fluid Dynamics Simulations of Vertical Axis Wind Turbines
,”
J. Renew. Sustain. Energy
,
7
(
3
), p.
033111
.
51.
Alom
,
N.
,
Saha
,
U. K.
, and
Dewan
,
A.
,
2021
, “
In the Quest of an Appropriate Turbulence Model for Analysing the Aerodynamics of a Conventional Savonius (S-Type) Wind Rotor
,”
J. Renew. Sustain. Energy
,
13
(
2
), p.
023313
.
52.
Tian
,
W.
,
Song
,
B.
,
Van Zwieten
,
J. H.
, and
Pyakurel
,
P.
,
2015
, “
Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine With Novel Blade Shapes
,”
Energies
,
8
(
8
), pp.
7915
7929
.
53.
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Performance Estimation of Savonius Wind and Savonius Hydrokinetic Turbines Under Identical Power Input
,”
J. Renew. Sustain. Energy
,
10
(
6
), p.
064704
.
You do not currently have access to this content.