Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The transformer is the key oil-filled equipment in the power system, and its fire behavior seriously affects the safe operation of the power grid. In this article, to analyze the fire development process and combustion behavior of oil-filled equipment, a mesoscale model of transformer equipment was constructed, and fire simulation experiments of transformer equipment under the action of external ignition sources were conducted. The flame temperature, flame height, heat release rate, oil temperature, and pressure were measured. The experimental results show that the oil-filled equipment fire presents the characteristics of nonlinear development. The fire can be divided into three stages: the ignition stage, the stable growth stage, and the combustion mutation stage. The transformer oil near the wall is pyrolyzed by the external heat source, and the combustible gas and transformer oil form a gas–liquid two-phase flow, which is the main reason for the nonlinear development of oil-filled equipment fires. The experimental results are of great significance for the safe operation and fire control of power system oil-filled equipment.

References

1.
Kim
,
D.-H.
,
Cho
,
N.-W.
,
Yoon
,
C.-H.
,
Park
,
P.-Y.
, and
Park
,
K.-S.
,
2017
, “
A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer
,”
Fire Sci. Eng.
,
31
(
5
), pp.
53
62
.
2.
Wang
,
M.
,
Vandermaar
,
A. J.
, and
Srivastava
,
K. D.
,
2002
, “
Review of Condition Assessment of Power Transformers in Service
,”
IEEE Electr. Insul. Mag.
,
18
(
6
), pp.
12
25
.
3.
Zhao
,
T.
,
Liu
,
Y. P.
,
Lv
,
F. C.
,
Geng
,
J. H.
, and
Wang
,
P.
,
2018
, “
Study of Cellulose Particle Motion Effect on Impulse Breakdown in Transformer Oil
,”
IEEE Trans. Dielectr. Electr. Insul.
,
25
(
1
), pp.
235
244
.
4.
Duarte
,
D.
,
2004
, “
A Performance Overview About Fire Risk Management in the Brazilian Hydroelectric Generating Plants and Transmission Network
,”
J. Loss Prev. Process Ind.
,
17
(
1
), pp.
65
75
.
5.
Zhao
,
J.
,
Wang
,
S.
,
Zhang
,
J.
,
Zhou
,
R.
, and
Yang
,
R.
,
2020
, “
Experimental Study on the Burning Characteristics of Transformer Oil Pool Fires
,”
Energy Fuels
,
34
(
4
), pp.
4967
4976
.
6.
Zhang
,
B.
,
Zhang
,
J.
,
Huang
,
Y.
,
Wang
,
Q.
,
Yu
,
Z.
, and
Fan
,
M.
,
2020
, “
Burning Process and Fire Characteristics of Transformer Oil: A Study Focusing on the Effects of Oil Type
,”
J. Therm. Anal. Calorim.
,
139
(
3
), pp.
1839
1848
.
7.
Zhao
,
J.
,
Zhang
,
J.
,
Chen
,
C.
,
Huang
,
H.
, and
Yang
,
R.
,
2020
, “
Experimental Investigation on the Burning Behaviors of Thin-Layer Transformer Oil on a Water Layer
,”
Process Saf. Environ. Prot.
,
139
, pp.
89
97
.
8.
Wu
,
C.
,
Zhou
,
T.
,
Chen
,
B.
,
Liu
,
Y.
, and
Liang
,
P.
,
2021
, “
Experimental Study on Burning Characteristics of the Large-Scale Transformer Oil Pool Fire With Different Extinguishing Methods
,”
Fire Technol.
,
57
(
1
), pp.
461
481
.
9.
Li
,
L.
,
Zhai
,
X.
,
Wang
,
J.
,
Chen
,
P.
, and
Shi
,
C.
,
2021
, “
Experimental Study on Vertical Spill Fire Characteristics of Transformer oil Under Continuous Spill Condition
,”
Process Saf. Environ. Prot.
,
156
, pp.
521
530
.
10.
Li
,
L.
,
Guo
,
X.
,
Lu
,
R.
,
Chen
,
P.
, and
Shi
,
C.
,
2022
, “
Experimental Study on Horizontal Fire Spread Characteristics of Transformer Oil
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012107
.
11.
Heskestad
,
G.
,
1983
, “
Luminous Heights of Turbulent Diffusion Flames
,”
Fire Saf. J.
,
5
(
2
), pp.
103
108
.
12.
Babrauskas
,
V.
,
1983
, “
Estimating Large Pool Fire Burning Rates
,”
Fire Technol.
,
19
(
4
), pp.
251
261
.
13.
Fan
,
W.
,
Hua
,
J.
, and
Liao
,
G.
,
1995
, “
Experimental Study on the Premonitory Phenomena of Boilover in Liquid Pool Fires Supported on Water
,”
J. Loss Prev. Process Ind.
,
8
(
4
), pp.
221
227
.
14.
Hamins
,
A.
,
Fischer
,
S. J.
,
Kashiwagi
,
T.
,
Klassen
,
M. E.
, and
Gore
,
J. P.
,
1994
, “
Heat Feedback to the Fuel Surface in Pool Fires
,”
Combust. Sci. Technol.
,
97
(
1–3
), pp.
37
62
.
15.
Nasr
,
A.
,
Suard
,
S.
,
El-Rabii
,
H.
,
Garo
,
J. P.
,
Gay
,
L.
, and
Rigollet
,
L.
,
2013
, “
Heat Feedback to the Fuel Surface of a Pool Fire in an Enclosure
,”
Fire Saf. J.
,
60
, pp.
56
63
.
16.
Yuan
,
X.
,
Gao
,
Z.
,
Ji
,
J.
,
Yang
,
L.
, and
Sun
,
J.
,
2017
, “
Influence of Stack Effect on the Heat Feedback to the n-Heptane Pool Fires
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
201
(
1
), pp.
12
27
.
17.
Suo-Anttila
,
J. M.
,
Blanchat
,
T. K.
,
Ricks
,
A. J.
, and
Brown
,
A. L.
,
2009
, “
Characterization of Thermal Radiation Spectra in 2 m Pool Fires
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2567
2574
.
18.
Mealy
,
C.
,
Benfer
,
M.
, and
Gottuk
,
D.
,
2014
, “
Liquid Fuel Spill Fire Dynamics
,”
Fire Technol.
,
50
(
2
), pp.
419
436
.
19.
Pan
,
Y.
,
Li
,
M.
,
Luo
,
X.
,
Wang
,
C.
,
Luo
,
Q.
, and
Li
,
J.
,
2020
, “
Analysis of Heat Transfer of Spilling Fire Spread Over Steady Flow n-Butanol Fuel
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104685
.
20.
Lin
,
Y.
,
Delichatsios
,
M. A.
,
Zhang
,
X.
, and
Hu
,
L.
,
2019
, “
Experimental Study and Physical Analysis of Flame Geometry in Pool Fires Under Relatively Strong Cross Flows
,”
Combust. Flame
,
205
, pp.
422
433
.
21.
Palacios
,
A.
, and
Casal
,
J.
,
2011
, “
Assessment of the Shape of Vertical Jet Fires
,”
Fuel
,
90
(
2
), pp.
824
833
.
22.
Gong
,
L.
,
Mo
,
T.
,
Zheng
,
X.
,
Han
,
Y.
,
Wang
,
H.
,
Yang
,
X.
, and
Zhang
,
Y.
,
2023
, “
Flame Behavior and Temperature Distribution of Coupled Fire Induced by the Interaction of Hydrogen Jet Flame and Pool Flame
,”
Process Saf. Environ. Prot.
,
179
, pp.
575
584
.
23.
Hu
,
L.
,
Shang
,
F.
,
Chen
,
Y.
, and
Chung
,
S. H.
,
2023
, “
Flame Detachment of Jet Fires at Windward and Leeward Sides in Crossflow: Experiment and a Damkohler Number Based Model
,”
Proc. Combust. Inst.
,
39
(
3
), pp.
4053
4061
.
24.
Liu
,
J.
,
Zhang
,
X.
, and
Xie
,
Q.
,
2019
, “
Flame Geometrical Characteristics of Downward Sloping Buoyant Turbulent Jet Fires
,”
Fuel
,
257
, p.
116112
.
25.
Wang
,
Q.
,
Hu
,
L.
,
Tang
,
F.
,
Palacios
,
A.
, and
Chung
,
S. H.
,
2023
, “
An Experimental Study and Analysis of Lift-off Length in Inclined Nonpremixed Turbulent Jet Flames
,”
Combust. Flame
,
255
, p.
112855
.
26.
Sun
,
S.
,
Chen
,
P.
,
Zhai
,
X.
, and
Liu
,
Y.
,
2024
, “
Effect of Outlet Shape on Flame Height of Transformer Oil Jet Fire Under External Fire Source
,”
ASME J. Energy Resour. Technol.
,
146
(
2
), p.
022301
.
27.
Zhang
,
Q.-X.
,
Liang
,
D.
, and
Wen
,
J.
,
2019
, “
Experimental Study of Flashing LNG Jet Fires Following Horizontal Releases
,”
J. Loss Prev. Process Ind.
,
57
, pp.
245
253
.
28.
Kong
,
Y.
,
Li
,
Y.
,
Wang
,
S.
,
Han
,
H.
,
Duan
,
P.
,
Yu
,
X.
, and
Han
,
J.
,
2024
, “
Experimental Study on Jet Fire Characteristics of Hydrogen-Blended Natural Gas
,”
Int. J. Hydrogen Energy
,
49
(
Part D
), pp.
1250
1260
.
29.
Fang
,
X.
,
Ren
,
F.
,
Zhang
,
X.
,
Sun
,
X.
,
Yang
,
Y.
, and
Hu
,
L.
,
2020
, “
Facade Flame Height Ejected From Opening of a Compartment Under the Coupling Effect of Side Walls and Ambient Wind
,”
Fire Saf. J.
,
112
, p.
102966
.
30.
Hu
,
L.
,
Hu
,
K.
,
Ren
,
F.
, and
Sun
,
X.
,
2017
, “
Facade Flame Height Ejected From an Opening of Fire Compartment Under External Wind
,”
Fire Saf. J.
,
92
, pp.
151
158
.
31.
Heskestad
,
G.
,
1999
, “
Turbulent Jet Diffusion Flames: Consolidation of Flame Height Data
,”
Combust. Flame
,
118
, pp.
51
56
.
You do not currently have access to this content.