Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Fluid starvation and congestion at the meshing area of external gear pumps (EGPs) happen inevitably as an intrinsic nature of these pumps. As a result, cavitation and excessive pressure pulsation are the two significant issues suffering the pump performance at almost any pump speed. Increasing speed or differential pressure exacerbates the situation, resulting in excessive noise, vibration, and damage to the pump or the hydraulic circuit, plus a significant reduction of pump efficiency. External gear pumps have tiny decompression grooves on the bearing blocks to alleviate these issues. However, these grooves cannot handle sufficient flow to prevent pressure drop at the intake side and pressure rise at the discharge side of the meshing area. This study presents analysis of an innovative core-feed inlets/outlets which effectively reduce cavitation and excessive pressure pulsation, even at extremely high speeds, by connecting the closed volumes of fluid at the gears meshing area to the main inlet/outlet through the center of gears. A computational fluid dynamics (CFD) analysis was performed to study the dynamic behavior of the pump. A fully functional prototype with secondary inlets and transparent components was built to validate the flow rate calculation against the experimental data and visualize the cavitation phenomena. The numerical results were in an excellent agreement with experimental data. The results show that the new pump can operate at much higher speeds with higher efficiency than a typical gear pump.

References

1.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
2.
Nejad
,
A. M.
, and
Tryggvason
,
G.
,
2020
, “
Power Generation Using Kites in a GroundGen Airborne Wind Energy System: A Numerical Study
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061306
.
3.
You
,
D.
, and
Metghalchi
,
H.
,
2022
, “
Analysis of Aqueous Lithium Bromide Absorption Refrigeration Systems
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012105
.
4.
Manring
,
N. D.
,
2005
, “
Measuring Pump Efficiency: Uncertainty Considerations
,”
ASME J. Energy Resour. Technol.
,
127
(
4
), pp.
280
284
.
5.
Heisler
,
A. S.
, and
Moskwa
,
J.
,
2009
, “
The Design of Low-Inertia, High-Speed External Gear Pump/Motors for Hydrostatic Dynamometer Systems
,”
SAE World Congress & Exhibition
.
6.
Yoon
,
Y.
,
Park
,
B.-H.
,
Shim
,
J.
,
Han
,
Y.-O.
,
Hong
,
B.-J.
, and
Yun
,
S.-H.
,
2017
, “
Numerical Simulation of Three-Dimensional External Gear Pump Using Immersed Solid Method
,”
Appl. Therm. Eng.
,
118
, pp.
539
550
.
7.
Mucchi
,
E.
,
Rivola
,
A.
, and
Dalpiaz
,
G.
,
2014
, “
Modelling Dynamic Behaviour and Noise Generation in Gear Pumps: Procedure and Validation
,”
Appl. Acoust.
,
77
, pp.
99
111
.
8.
Zhou
,
J.
,
Vacca
,
A.
, and
Casoli
,
P.
,
2014
, “
A Novel Approach for Predicting the Operation of External Gear Pumps Under Cavitating Conditions
,”
Simul. Model. Pract. Theory
,
45
, pp.
35
49
.
9.
Mithun
,
M.-G.
,
Koukouvinis
,
P.
,
Karathanassis
,
I. K.
, and
Gavaises
,
M.
,
2019
, “
Numerical Simulation of Three-Phase Flow in an External Gear Pump Using Immersed Boundary Approach
,”
Appl. Math. Model.
,
72
, pp.
682
699
.
10.
Stryczek
,
J.
,
Antoniak
,
P.
,
Jakhno
,
O.
,
Kostyuk
,
D.
,
Kryuchkov
,
A.
,
Belov
,
G.
, and
Rodionov
,
L.
,
2015
, “
Visualisation Research of the Flow Processes in the Outlet Chamber–Outlet Bridge–Inlet Chamber Zone of the Gear Pumps
,”
Arch. Civ. Mech. Eng.
,
15
(
1
), pp.
95
108
.
11.
Jiang
,
Y.
,
Furmanczyk
,
M.
,
Lowry
,
S.
,
Zhang
,
D.
, and
Perng
,
C.
,
2008
, “
A Three Dimensional Design Tool for Crescent Oil Pump
,”
SAE World Congress & Exhibition
.
12.
del Campo
,
D.
,
Castilla
,
R.
,
Raush
,
G.
,
Gamez-Montero
,
P.
, and
Codina
,
E.
,
2014
, “
Pressure Effects on the Performance of External Gear Pumps Under Cavitation
,”
Proc. Inst. Mech. Eng. Part A: C J. Mechan. Eng. Sci.
,
228
(
16
), pp.
2925
2937
.
13.
Wang
,
S.
,
Sakura
,
H.
, and
Kasarekar
,
A.
,
2011
, “
Numerical Modelling and Analysis of External Gear Pumps by Applying Generalized Control Volumes
,”
Math. Comput. Model. Dyn. Syst.
,
17
(
5
), pp.
501
513
.
14.
Molton
,
G. R.
,
1987
, “
Techniques for Reducing Fluid Borne Noise From Gear Pumps and Their Circuits
,”
SAE Trans.
,
96
, pp.
844
851
.
15.
Rabsztyn
,
D.
, and
Klarecki
,
K.
,
2017
, “
Experimental Tests of Pressure Pulsation of Gear Pumps
,”
International Conference on Renewable Energy Sources—Research and Business
, pp.
461
469
.
16.
Antoniak
,
P.
, and
Stryczek
,
J.
,
2018
, “
Visualization Study of the Flow Processes and Phenomena in the External Gear Pump
,”
Arch. Civ. Mech. Eng.
,
18
(
4
), pp.
1103
1115
.
17.
Weishun Ni
,
S. A. H.
,
Wetch
,
J.
, and
Griffiths
,
C. L.
,
2008
, “Gear Pump With Slots in Teeth to Reduce Cavitation,” U.S. Patent No. 8137085B2.
18.
Elder
,
J. S.
,
2011
, “Gear Pump Cavitation Reduction,” U.S. Patent No. 7878781B2.
19.
George
,
J. T.
,
Borkar
,
K. R.
, and
Nyzen
,
R. J.
,
2018
, “Pump With Bleed Mechanism for Reducing Cavitation,” U.S. Patent No. 20190024657A1.
20.
McBurnett
,
J. R.
, and
McMillan
,
W. D.
,
1998
, “Cavitation-Free Gear Pump,” U.S. Patent No. 6123533A.
21.
Zhao
,
X.
, and
Vacca
,
A.
,
2019
, “
Theoretical Investigation Into the Ripple Source of External Gear Pumps
,”
Energies
,
12
(
3
), p.
535
.
22.
Edge
,
K. A.
, and
Johnston
,
D. N.
,
1990
, “
The ‘Secondary Source’ Method for the Measurement of Pump Pressure Ripple Characteristics Part 1: Description of Method
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
204
(
1
), pp.
33
40
.
23.
Kojima
,
E.
,
Yu
,
J.
, and
Ichiyanagi
,
T.
,
2000
, “
Experimental Determining and Theoretical Predicting of Source Flow Ripple Generated by Fluid Power Piston Pumps
,”
SAE Trans.
,
109
, pp.
348
357
.
24.
O’Neal
,
D. L.
, and
Maroney
,
G. E.
,
1978
, “
Measuring Pump Fluid-Borne Noise Generation Potential
,”
BFPR J.
,
11
, pp.
235
241
.
25.
Edge
,
K. A.
, and
Wing
,
T. J.
,
1983
, “
The Measurement of the Fluid Borne Pressure Ripple Characteristics of Hydraulic Components
,”
Proc. Inst. Mech. Eng.
,
197
(
4
), pp.
247
254
.
26.
Kojima
,
E.
, and
Shinada
,
M.
,
1984
, “
Characteristics of Fluidborne Noise Generated by Fluid Power Pump: 3rd Report, Discharge Pressure Pulsation of External Gear Pump
,”
Bull. JSME
,
27
(
232
), pp.
2188
2195
.
27.
Marinaro
,
G.
,
Frosina
,
E.
, and
Senatore
,
A.
,
2021
, “
A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps
,”
Energies
,
14
(
2
), p.
471
.
28.
Li
,
Y. Z.
,
Gao
,
L. H.
, and
Tang
,
X. Y.
,
2011
, “
The Flow Pulsation Analysis of an External Gear Pump
,”
Adv. Mater. Res.
,
236–238
, pp.
2327
2331
.
29.
Cui
,
X.
,
Wang
,
J.
, and
Lu
,
X.
,
2020
, “
Profile Design of Gear Pump for Reducing Flow Ripple
,”
AIP Conf. Proc.
,
2258
.
30.
Tian
,
H.
,
2018
, “
Dynamic Pressure Simulation of an External Gear Pump With Relief Chamber Using a Morphological Approach
,”
IEEE Access
,
6
, pp.
77509
77518
.
31.
Liu
,
Y.-Y.
,
An
,
K.
,
Liu
,
H.
,
Gong
,
J.-G.
, and
Wang
,
L.-Q.
,
2019
, “
Numerical and Experimental Studies on Flow Performances and Hydraulic Radial Forces of an Internal Gear Pump With a High Pressure
,”
Eng. Appl. Comput. Fluid Mech.
,
13
(
1
), pp.
1130
1143
.
32.
Shi
,
Z.
,
Zhao
,
T.
,
Wan
,
Y.
, and
Zhang
,
X.
,
2017
, “
Development of a Micropump Composed of Three Gears With Logix Tooth Profiles Fabricated by Micromilling Technology
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1
), pp.
1507
1517
.
33.
Liu
,
D.
,
Ba
,
Y.
, and
Ren
,
T.
,
2019
, “
Flow Fluctuation Abatement of High-Order Elliptical Gear Pump by External Noncircular Gear Drive
,”
Mech. Mach. Theory
,
134
, pp.
338
348
.
34.
Li
,
G.
,
Zhang
,
L.
, and
Han
,
W.
,
2018
, “
Profile Design and Displacement Analysis of the Low Pulsating Gear Pump
,”
Adv. Mech. Eng.
,
10
(
3
).
35.
Manring
,
N. D.
, and
Kasaragadda
,
S. B.
,
2003
, “
The Theoretical Flow Ripple of an External Gear Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
3
), pp.
396
404
.
36.
Devendran
,
R. S.
, and
Vacca
,
A.
,
2017
, “
Theoretical Analysis for Variable Delivery Flow External Gear Machines Based on Asymmetric Gears
,”
Mech. Mach. Theory
,
108
, pp.
123
141
.
37.
Rui
,
C.
,
Huacong
,
L.
,
Jiaxing
,
Z.
, and
Ning
,
G.
,
2021
, “
Analysis of Pressure Pulsation in Aviation Gear Pump
,”
J. Phys.: Conf. Ser.
,
1786
(
1
).
38.
Panchal
,
S.
,
Dincer
,
I.
, and
Agelin-Chaab
,
M.
,
2015
, “
Thermodynamic Analysis of Hydraulic Braking Energy Recovery Systems for a Vehicle
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p. 011601.
39.
Ryszard
,
D.
, and
Tim
,
P.
,
2019
, “Introduction to Gate Drives,”
Lock Gates and Other Closures in Hydraulic Projects
,
Elsevier Inc.
, pp.
705
784
.
40.
Mathias
,
J. A.
,
Johnston
, Jr.,
J. R.
,
Cao
,
J.
,
Priedeman
,
D. K.
, and
Christensen
,
R. N.
,
2009
, “
Experimental Testing of Gerotor and Scroll Expanders Used in, and Energetic and Exergetic Modeling of, an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p. 012201.
41.
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Orlandini
,
V.
,
Ottaviano
,
S.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2017
, “
Experimental Performance of a Micro-ORC Energy System for Low Grade Heat Recovery
,”
Energy Proc.
,
129
, pp.
899
906
.
42.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p. 011602.
43.
Sedri
,
F.
, and
Riasi
,
A.
,
2019
, “
Investigation of Leakage Within an External Gear Pump With New Decompression Slots: Numerical and Experimental Study
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
5
), p.
224
.
44.
Sedri
,
F.
, and
Riasi
,
A.
,
2023
, “External Gear Pump,” Patent WO/2023/156978, https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2023156978
45.
Strasser
,
W.
,
2006
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.
46.
del Campo
,
D.
,
Castilla
,
R.
,
Raush
,
G. A.
,
Gamez Montero
,
P. J.
, and
Codina
,
E.
,
2012
, “
Numerical Analysis of External Gear Pumps Including Cavitation
,”
ASME J. Fluids Eng.
,
134
(
8
), p. 081105.
47.
ANSYS Fluent UDF Manual
,
2017
, “ANSYS Fluent Release 18.2.”
48.
ANSYS Fluent Theory Guide
,
2017
, “ANSYS Fluent Release 18.2.”
49.
ANSYS Fluent User’s Guide
,
2017
, “ANSYS Fluent Release 18.2.”
50.
Castilla
,
R.
,
Gamez-Montero
,
P. J.
,
Ertürk
,
N.
,
Vernet
,
A.
,
Coussirat
,
M.
, and
Codina
,
E.
,
2010
, “
Numerical Simulation of Turbulent Flow in the Suction Chamber of a Gearpump Using Deforming Mesh and Mesh Replacement
,”
Int. J. Mech. Sci.
,
52
(
10
), pp.
1334
1342
.
51.
Michael
,
P.
,
Khalid
,
H.
, and
Wanke
,
T.
,
2012
, “
An Investigation of External Gear Pump Efficiency and Stribeck Values
,”
SAE Techniocal Paper
,
8
.
52.
Houzeaux
,
G.
, and
Codina
,
R.
,
2007
, “
A Finite Element Method for the Solution of Rotary Pumps
,”
Comput. Fluids
,
36
(
4
), pp.
667
679
.
53.
2019
, “Hydraulic Pumps,”
Hydraulic Control Systems
,
John Wiley & Sons
,
New York
, pp.
225
261
.
You do not currently have access to this content.