Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The present paper optimized the first and second law performance of the triple-effect vapor absorption refrigeration systems (TE-VARS) using statistical techniques like Taguchi, Taguchi-based gray relational analysis (GRA), and response surface methodology (RSM)-based GRA methods, which provide the most accurate and optimized results. Liquified petroleum gas (LPG) and compressed natural gas (CNG) are considered as the source of energy to operate TE-VARS, as the system requires significantly higher generator temperature. Also, volume flowrate of these gases along with the annual operating cost to drive the system have been presented. A thermodynamic model was first formulated using engineering equation solver (ees) software for the computation of the coefficient of performance (COP) and exergetic efficiency (ECOP). The most influential parameters like temperature in the main generator, concentration, and pressure at different components are studied and determined using analysis of variance (ANOVA) and Taguchi methods. The optimum parameters were determined based on the mean effect plot of S/N ratios for COP and ECOP. It has been found that the maximum COP and ECOP were calculated to be 1.915 and 0.15, respectively, under the Taguchi method. Furthermore, Taguchi-GRA was used for the simultaneous optimization of the operating parameters and performance of the system. It is observed that the absorber temperature is the most influential parameter for affecting COP and ECOP. Moreover, a RSM-based GRA method was also applied and developed regression models that yield most optimum COP and ECOP as 1.963 and 0.1606, respectively. Comparison shows that the RSM-based GRA method provides the most optimum conditions, which is one of the key finding of the present study. Also, rate of exergy destruction at each component of TE-VARS has been plotted under optimized operating conditions. The optimum volume flowrate for LPG and CNG comes out to be 0.057 and 0.177 m3/s, while the minimum operating cost (yearly) are 299.827$ and 183.293$, respectively.

References

1.
Aryanfar
,
Y.
,
Mohtaram
,
S.
,
García Alcaraz
,
J. L.
, and
Sun
,
H. G.
,
2023
, “
Energy and Exergy Assessment and a Competitive Study of a Two-Stage ORC for Recovering SFGC Waste Heat and LNG Cold Energy
,”
Energy
,
264
(
12619
), p.
1
.
2.
Mohtaram
,
S.
, and
Wu
,
W.
,
2023
, “
A Computationally Efficient Heuristic Approach for Solving a New Sophisticated Arrangement of Cogeneration Combined Heat and Power Cycle
,”
Energy Rep.
,
9
, pp.
42
50
.
3.
Chen
,
L.
,
Zhang
,
L.
,
Wang
,
Y.
,
Xie
,
M.
,
Yang
,
H.
,
Ye
,
K.
, and
Mohtaram
,
S.
,
2023
, “
Design and Performance Evaluation of a Novel System Integrating Water-Based Carbon Capture With Adiabatic Compressed Air Energy Storage
,”
Energy Convers. Manage.
,
276
(
11658
), p.
3
.
4.
Kazemian
,
M. E.
,
Gandjalikhan Nassab
,
S. A.
, and
Jahanshahi Javaran
,
E.
,
2021
, “
Comparative Study of Box–Behnken and Central Composite Designs to Investigate the Effective Parameters of Ammonia–Water Absorption Refrigerant System
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
16
), pp.
3095
3108
.
5.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
First and Second Law Analyses of Double Effect Parallel and Series Flow Direct Fired Absorption Cycles for Optimum Operating Parameters
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
124501
.
6.
Chen
,
L.
,
Wang
,
Y.
,
Xie
,
M.
,
Ye
,
K.
, and
Mohtaram
,
S.
,
2021
, “
Energy and Exergy Analysis of Two Modified Adiabatic Compressed Air Energy Storage (A-CAES) System for Cogeneration of Power and Cooling on the Base of Volatile Fluid
,”
J. Energy Storage
,
42
(
10300
), p.
9
.
7.
Sujatha
,
I.
, and
Venkatarathnam
,
G.
,
2017
, “
Performance of a Vapour Absorption Heat Transformer Operating With Ionic Liquids and Ammonia
,”
Energy
,
141
, pp.
924
936
.
8.
Chen
,
W.
, and
Bai
,
Y.
,
2016
, “
Thermal Performance of an Absorption-Refrigeration System With [Emim]Cu2Cl5/NH3 as Working Fluid
,”
Energy
,
112
, pp.
332
341
.
9.
Kaushik
,
S. C.
, and
Arora
,
A.
,
2009
, “
Energy and Exergy Analysis of Single Effect and Series Flow Double Effect Water–Lithium Bromide Absorption Refrigeration Systems
,”
Int. J. Refrig.
,
32
(
6
), pp.
1247
1258
.
10.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl–H2O and LiBr–H2O Type Solar Cooling System
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051204
.
11.
Colorado
,
D.
, and
Rivera
,
W.
,
2015
, “
Performance Comparison Between a Conventional Vapor Compression and Compression-Absorption Single-Stage and Double-Stage Systems Used for Refrigeration
,”
Appl. Therm. Eng.
,
87
, pp.
273
285
.
12.
Cimsit
,
C.
, and
Ozturk
,
I. T.
,
2012
, “
Analysis of Compression-Absorption Cascade Refrigeration Cycles
,”
Appl. Therm. Eng.
,
40
, pp.
311
317
.
13.
Ansari
,
K. A.
,
Azhar
,
M.
, and
Altamush Siddiqui
,
M.
,
2020
, “
Exergy Analysis of Single-Effect Vapor Absorption System Using Design Parameters
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062105
.
14.
Agarwal
,
S.
,
Arora
,
A.
, and
Arora
,
B. B.
,
2020
, “
Energy and Exergy Analysis of Vapor Compression–Triple Effect Absorption Cascade Refrigeration System
,”
Eng. Sci. Technol. Int. J.
,
23
(
3
), pp.
625
641
.
15.
Gomri
,
R.
, and
Hakimi
,
R.
,
2008
, “
Second Law Analysis of Double Effect Vapour Absorption Cooler System
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3343
3348
.
16.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2017
, “
Optimization of Operating Temperatures in the Gas Operated Single to Triple Effect Vapour Absorption Refrigeration Cycles
,”
Int. J. Refrig.
,
82
, pp.
401
425
.
17.
Colorado-Garrido
,
D.
,
2019
, “
Advanced Exergy Analysis of a Compression-Absorption Cascade Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042002
.
18.
Aktemur
,
C.
, and
Ozturk
,
I. T.
,
2021
, “
Energy and Exergy Analysis of a Subcritical Cascade Refrigeration System With Internal Heat Exchangers Using Environmentally Friendly Refrigerants
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102103
.
19.
Pandya
,
B.
,
Patel
,
J.
, and
Mudgal
,
A.
,
2017
, “
Thermodynamic Evaluation of Generator Temperature in LiBr–Water Absorption System for Optimal Performance
,”
Energy Procedia
,
109
(
Nov.
), pp.
270
278
.
20.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
Exergy Analysis of Single to Triple Effect Lithium Bromide–Water Vapour Absorption Cycles and Optimization of the Operating Parameters
,”
Energy Convers. Manage.
,
180
, pp.
1225
1246
.
21.
Modi
,
B.
,
Mudgal
,
A.
, and
Patel
,
B.
,
2017
, “
Energy and Exergy Investigation of Small Capacity Single Effect Lithium Bromide Absorption Refrigeration System
,”
Energy Procedia
,
109
(
Nov.
), pp.
203
210
.
22.
Ferwati
,
M. S.
,
Ahmad
,
A. M.
,
Takalkar
,
G. D.
, and
Bicer
,
Y.
,
2021
, “
Energy and Exergy Analysis of Parallel Flow Double Effect H2O-[Mmim][DMP] Absorption Refrigeration System for Solar Powered District Cooling
,”
Case Stud. Therm. Eng.
,
28
, p.
101382
.
23.
Samanta
,
S.
, and
Basu
,
D. N.
,
2016
, “
Energy and Entropy-Based Optimization of a Single-Stage Water–Lithium Bromide Absorption Refrigeration System
,”
Heat Transfer Eng.
,
37
(
2
), pp.
232
241
.
24.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2021
, “
Energy and Exergy Optimisation of Parallel Flow Direct and Indirect Fired Triple Effect Vapour Absorption Systems
,”
Int. J. Exergy
,
34
(
4
), pp.
385
410
.
25.
Konwar
,
D.
, and
Gogoi
,
T. K.
,
2018
, “
Performance of Double Effect H2O–LiCl Absorption Refrigeration Systems and Comparison With H2O–LiBr Systems, Part 2: Exergy Analysis
,”
Therm. Sci. Eng. Prog.
,
8
, pp.
171
183
.
26.
Jiang
,
L.
,
Gu
,
Z.
,
Feng
,
X.
, and
Li
,
Y.
,
2002
, “
Thermo-economical Analysis Between New Absorption-Ejector Hybrid Refrigeration System and Small Double-Effect Absorption System
,”
Appl. Therm. Eng.
,
22
(
9
), pp.
1027
1036
.
27.
Azhar
,
M.
,
2023
, “
First Law Optimization and Review of Double and Triple-Effect Parallel Flow Vapor Absorption Refrigeration Systems
,”
Processes
,
11
(
8
), p.
2347
.
28.
Akisawa
,
A.
,
Watanabe
,
F.
,
Enoki
,
K.
, and
Takei
,
T.
,
2017
, “
Performance of Thermal Energy Transportation Based on Absorption Heat Pump Cycle Over 200 m Distance—Solution Transportation Absorption Chiller
,”
Appl. Therm. Eng.
,
127
, pp.
1200
1205
.
29.
Gomri
,
R.
,
2009
, “
Second Law Comparison of Single Effect and Double Effect Vapour Absorption Refrigeration Systems
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1279
1287
.
30.
Khan
,
M. M. A.
,
Ibrahim
,
N. I.
,
Saidur
,
R.
,
Mahbubul
,
I. M.
, and
Al-Sulaiman
,
F. A.
,
2016
, “
Performance Assessment of a Solar Powered Ammonia–Water Absorption Refrigeration System With Storage Units
,”
Energy Convers. Manage.
,
126
, pp.
316
328
.
31.
Lizarte
,
R.
, and
Marcos
,
J. D.
,
2016
, “
COP Optimisation of a Triple-Effect H2O/LiBr Absorption Cycle Under Off-Design Conditions
,”
Appl. Therm. Eng.
,
99
, pp.
195
205
.
32.
Solanki
,
A.
, and
Pal
,
Y.
,
2022
, “
Energy and Exergy Evaluation of Triple-Effect H2O/LiBr Absorption Cooling System
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
3626
3637
.
33.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2009
, “
Advanced Exergetic Evaluation of Refrigeration Machines Using Different Working Fluids
,”
Energy
,
34
(
12
), pp.
2248
2258
.
34.
Azhar
,
M.
, and
Altamush Siddiqui
,
M.
,
2020
, “
Comprehensive Exergy Analysis and Optimization of Operating Parameters for Double Effect Parallel Flow Absorption Refrigeration Cycle
,”
Therm. Sci. Eng. Prog.
,
16
, p.
100464
.
35.
Gogoi
,
T. K.
,
2015
, “
Estimation of Operating Parameters of a Water–LiBr Vapor Absorption Refrigeration System Through Inverse Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022002
.
36.
Yuangyai
,
C.
, and
Nembhard
,
H. B.
,
2014
, “Design of Experiments: A Key to Innovation in Nanotechnology,”
Emerging Nanotechnologies for Manufacturing Inc
,
S.
Mohtaram
, and
W.
Wu
, eds.,
Elsevier
,
New York
, pp.
42
50
.
37.
Durakovic
,
B.
,
2017
, “
Design of Experiments Application, Concepts, Examples: State of the Art
,”
Period. Eng. Nat. Sci.
,
5
(
3
), pp.
421
439
.
38.
Canbolat
,
A. S.
,
Bademlioglu
,
A. H.
,
Arslanoglu
,
N.
, and
Kaynakli
,
O.
,
2019
, “
Performance Optimization of Absorption Refrigeration Systems Using Taguchi, ANOVA and Grey Relational Analysis Methods
,”
J. Cleaner Prod.
,
229
, pp.
874
885
.
39.
Zhang
,
K.
,
Ma
,
H.
,
Li
,
Q.
,
Wang
,
D.
,
Song
,
Q.
,
Wang
,
X.
, and
Kong
,
X.
,
2022
, “
Thermodynamic Analysis and Optimization of Variable Effect Absorption Refrigeration System Using Multi-Island Genetic Algorithm
,”
Energy Rep.
,
8
, pp.
5443
5454
.
40.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2008
, “
A New Approach to the Exergy Analysis of Absorption Refrigeration Machines
,”
Energy
,
33
(
6
), pp.
890
907
.
41.
Mussati
,
S. F.
,
Mansouri
,
S. S.
,
Gernaey
,
K. V.
,
Morosuk
,
T.
, and
Mussati
,
M. C.
,
2019
, “
Model-Based Cost Optimization of Double-Effect Water–Lithium Bromide Absorption Refrigeration Systems
,”
Processes
,
7
(
1
), p.
50
.
42.
Arora
,
A.
,
Arora
,
B. B.
, and
Maji
,
S.
,
2012
, “Energy and Exergy Analysis of Engine Exhaust Driven Vapour Absorption Refrigeration System,” SAE Technical Papers.
43.
Kazemian
,
M. E.
,
Nassab
,
G. A. S.
, and
Jahanshahi Javaran
,
E.
,
2020
,
Comparative Study of Box–Behnken and Central Composite Designs to Investigate the Effective Parameters of Ammonia–Water Absorption Refrigerant System
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
16
), pp.
3095
3108
.
You do not currently have access to this content.