Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Electric vehicles (EVs) are considered an environmentally friendly option compared to conventional vehicles. As the most critical module in EVs, batteries are complex electrochemical components with nonlinear behavior. On-board battery system performance is also affected by complicated operating environments. Real-time EV battery in-service status prediction is tricky but vital to enable fault diagnosis and prevent dangerous occurrences. Data-driven models with advantages in time-series analysis can be used to capture the degradation pattern from data about certain performance indicators and predict the battery states. The transformer model can capture long-range dependencies efficiently using a multi-head attention block mechanism. This paper presents the implementation of a standard transformer and an encoder-only transformer neural network to predict EV battery state of health (SOH). Based on the analysis of the lithium-ion battery from the NASA Prognostics Center of Excellence website's publicly accessible dataset, 28 features related to the charge and discharge measurement data are extracted. The features are screened using Pearson correlation coefficients. The results show that the filtered features can improve the model's accuracy and computational efficiency. The proposed standard transformer shows good performance in the SOH prediction.

References

1.
Reinhardt
,
R.
,
Christodoulou
,
I.
,
Gassó-Domingo
,
S.
, and
Amante García
,
B.
,
2019
, “
Towards Sustainable Business Models for Electric Vehicle Battery Second Use: A Critical Review
,”
J. Environ. Manag.
,
245
, pp.
432
446
.
2.
Fang
,
W.
,
Kwon
,
O. J.
, and
Wang
,
C.-Y.
,
2010
, “
Electrochemical–Thermal Modeling of Automotive Li-Ion Batteries and Experimental Validation Using a Three-Electrode Cell
,”
Int. J. Energy Res.
,
34
(
2
), pp.
107
115
.
3.
Capitaine
,
J.-A.
, and
Wang
,
Q.
,
2018
, “
Design of a Test Platform for the Determination of Lithium-Ion Batteries State of Health
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021702
.
4.
Quijano-Ortiz
,
F.
, and
Seepersad
,
C.
,
2022
, “
Design Recommendations for Reducing the Environmental Impact of Battery Packs
,”
Proceedings of the IDETC/CIE
,
St. Louis, MO
,
Aug. 14–17
,
American Society of Mechanical Engineers Digital Collection
, p. V005T05A010.
5.
Paulus
,
G. K.
,
Hornstra
,
L. M.
,
Alygizakis
,
N.
,
Slobodnik
,
J.
,
Thomaidis
,
N.
, and
Medema
,
G.
,
2019
, “
The Impact of On-Site Hospital Wastewater Treatment on the Downstream Communal Wastewater System in Terms of Antibiotics and Antibiotic Resistance Genes
,”
Int. J. Hyg. Environ. Health
,
222
(
4
), pp.
635
644
.
6.
Patel
,
P.
, and
Nelson
,
G. J.
,
2020
, “
The Influence of Structure on the Electrochemical and Thermal Response of Li-Ion Battery Electrodes
,”
ASME J. Energy Resour. Technol.
,
142
(5), p.
050906
.
7.
Waldmann
,
T.
,
Wilka
,
M.
,
Kasper
,
M.
,
Fleischhammer
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2014
, “
Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries—A Post-Mortem Study
,”
J. Power Sources
,
262
, pp.
129
135
.
8.
Tanim
,
T. R.
,
Dufek
,
E. J.
,
Evans
,
M.
,
Dickerson
,
C.
,
Jansen
,
A. N.
,
Polzin
,
B. J.
,
Dunlop
,
A. R.
, et al
,
2019
, “
Extreme Fast Charge Challenges for Lithium-Ion Battery: Variability and Positive Electrode Issues
,”
J. Electrochem. Soc.
,
166
(
10
), p.
A1926
A1938
.
9.
Kim
,
T. J.
,
Youn
,
B. D.
, and
Kim
,
H. J.
,
2014
, “
Online-Applicable Temperature Prediction Model for EV Battery Pack Thermal Management
,”
Proceedings of the IDETC/CIE
,
Portland, OR
,
Aug. 4–7, 2013
,
American Society of Mechanical Engineers Digital Collection
, p. V008T12A008.
10.
Noura
,
N.
,
Boulon
,
L.
, and
Jemeï
,
S.
,
2020
, “
A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges
,”
World Electr. Veh. J.
,
11
(
4
), p.
66
.
11.
Lui
,
Y. H.
,
Li
,
M.
,
Sadoughi
,
M.
,
Hu
,
C.
, and
Hu
,
S.
,
2018
, “
Physics-Based State of Health Estimation of Lithium-Ion Battery Using Sequential Experimental Design
,”
Proceedings of the IDETC/CIE
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers Digital Collection
, p. V02BT03A061.
12.
Li
,
W.
,
Sengupta
,
N.
,
Dechent
,
P.
,
Howey
,
D.
,
Annaswamy
,
A.
, and
Sauer
,
D. U.
,
2021
, “
One-Shot Battery Degradation Trajectory Prediction With Deep Learning
,”
J. Power Sources
,
506
, p.
230024
.
13.
Hu
,
C.
,
Hong
,
M.
,
Li
,
Y.
, and
Jeong
,
H.-L.
,
2016
, “
On-Board Analysis of Degradation Mechanisms of Lithium-Ion Battery Using Differential Voltage Analysis
,”
Proceedings of the IDETC/CIE
,
Charlotte, NC
,
Aug. 21–24
,
American Society of Mechanical Engineers Digital Collection
, p. V02AT03A044.
14.
Xi
,
Z.
,
Jing
,
R.
, and
Lee
,
C.
,
2016
, “
Diagnostics and Prognostics of Lithium-Ion Batteries
,”
Proceedings of the IDETC/CIE
,
Boston, MA
,
Aug. 2–5
,
American Society of Mechanical Engineers Digital Collection
, p. V02AT03A038.
15.
Fotouhi
,
A.
,
Auger
,
D. J.
,
Propp
,
K.
,
Longo
,
S.
, and
Wild
,
M.
,
2016
, “
A Review on Electric Vehicle Battery Modelling: From Lithium-Ion Toward Lithium–Sulphur
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
1008
1021
.
16.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), p.
1526
.
17.
Han
,
S.
,
Tang
,
Y.
, and
Khaleghi Rahimian
,
S.
,
2021
, “
A Numerically Efficient Method of Solving the Full-Order Pseudo-2-Dimensional (P2D) Li-Ion Cell Model
,”
J. Power Sources
,
490
, p.
229571
.
18.
Edge
,
J. S.
,
O’Kane
,
S.
,
Prosser
,
R.
,
Kirkaldy
,
N. D
,
Patel
,
A. N.
,
Hales
,
A.
,
Ghosh
A
, et al
,
2021
, “
Lithium Ion Battery Degradation: What You Need to Know
,”
Phys. Chem. Chem. Phys.
,
23
(
14
), pp.
8200
8221
.
19.
Patil
,
M. A.
,
Tagade
,
P.
,
Hariharan
,
K. S.
,
Kolake
,
S. M.
,
Song
,
T.
,
Yeo
,
T.
, and
Doo
,
S.
,
2015
, “
A Novel Multistage Support Vector Machine Based Approach for Li Ion Battery Remaining Useful Life Estimation
,”
Appl. Energy
,
159
, pp.
285
297
.
20.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M.
,
2019
, “
Validation and Verification of a Hybrid Method for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
J. Clean. Prod.
,
212
, pp.
240
249
.
21.
Lee
,
S.
,
Cui
,
H.
,
Rezvanizaniani
,
M.
, and
Ni
,
J.
,
2013
, “
Battery Prognostics: SOC and SOH Prediction
,”
Proceedings of the IDETC/CIE
,
Notre Dame, IN
,
June 4–8
,
American Society of Mechanical Engineers Digital Collection
, pp.
689
695
.
22.
Li
,
W.
,
Jiao
,
Z.
,
Du
,
L.
,
Fan
,
W.
, and
Zhu
,
Y.
,
2019
, “
An Indirect RUL Prognosis for Lithium-Ion Battery Under Vibration Stress Using Elman Neural Network
,”
Int. J. Hydrogen Energy
,
44
(
23
), pp.
12270
12276
.
23.
Dai
,
H.
,
Zhao
,
G.
,
Lin
,
M.
,
Wu
,
J.
, and
Zheng
,
G.
,
2019
, “
A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain
,”
IEEE Trans. Ind. Electron.
,
66
(
10
), pp.
7706
7716
.
24.
Bai
,
G.
, and
Wang
,
P.
,
2015
, “
A Self-Cognizant Dynamic System Approach for Health Management: Lithium-Ion Battery Case Study
,”
Proceedings of the IDETC/CIE
,
Buffalo, NY
,
Aug. 17–20
,
American Society of Mechanical Engineers Digital Collection
, p. V02AT03A041.
25.
Yayan
,
U.
,
Arslan
,
A. T.
, and
Yucel
,
H.
,
2021
, “
A Novel Method for SoH Prediction of Batteries Based on Stacked LSTM With Quick Charge Data
,”
Appl. Artif. Intell.
,
35
(
6
), pp.
421
439
.
26.
Sun
,
H.
,
Sun
,
J.
,
Zhao
,
K.
,
Wang
,
L.
, and
Wang
,
K.
,
2022
, “
Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation
,”
Math. Probl. Eng.
,
2022
(
1
), p.
e9645892
.
27.
Fan
,
Y.
,
Xiao
,
F.
,
Li
,
C.
,
Yang
,
G.
, and
Tang
,
X.
,
2020
, “
A Novel Deep Learning Framework for State of Health Estimation of Lithium-Ion Battery
,”
J. Energy Storage
,
32
, p.
101741
.
28.
Li
,
X.
,
Zhang
,
L.
,
Wang
,
Z.
, and
Dong
,
P.
,
2019
, “
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Model Combining the Long Short-Term Memory and Elman Neural Networks
,”
J. Energy Storage
,
21
, pp.
510
518
.
29.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
, “Attention Is All You Need.”
30.
Chen
,
D.
,
Hong
,
W.
, and
Zhou
,
X.
,
2022
, “
Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Access
,
10
, pp.
19621
19628
.
31.
Zhou
,
Y.
,
Huang
,
Y.
,
Pang
,
J.
, and
Wang
,
K.
,
2019
, “
Remaining Useful Life Prediction for Supercapacitor Based on Long Short-Term Memory Neural Network
,”
J. Power Sources
,
440
, p.
227149
.
32.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.
33.
Kaur
,
K.
,
Garg
,
A.
,
Cui
,
X.
,
Singh
,
S.
, and
Panigrahi
,
B. K.
,
2021
, “
Deep Learning Networks for Capacity Estimation for Monitoring SOH of Li-Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
45
(
2
), pp.
3113
3128
.
34.
Siami-Namini
,
S.
,
Tavakoli
,
N.
, and
Namin
,
A. S.
,
2019
, “
The Performance of LSTM and BiLSTM in Forecasting Time Series
,”
2019 IEEE International Conference on Big Data (Big Data)
,
Los Angeles, CA
,
Dec. 9–12
, pp.
3285
3292
.
35.
Qu
,
J.
,
Liu
,
F.
,
Ma
,
Y.
, and
Fan
,
J.
,
2019
, “
A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery
,”
IEEE Access
,
7
, pp.
87178
87191
.
36.
Li
,
J.
,
Niu
,
H.
,
Meng
,
F.
, and
Li
,
R.
,
2022
, “
Prediction of Short-Term Photovoltaic Power Via Self-Attention-Based Deep Learning Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
101301
.
37.
Mo
,
Y.
,
Wu
,
Q.
,
Li
,
X.
, and
Huang
,
B.
,
2021
, “
Remaining Useful Life Estimation Via Transformer Encoder Enhanced by a Gated Convolutional Unit
,”
J. Intell. Manuf.
,
32
(
7
), pp.
1997
2006
.
38.
Zeyer
,
A.
,
Bahar
,
P.
,
Irie
,
K.
,
Schlüter
,
R.
, and
Ney
,
H.
,
2019
, “
A Comparison of Transformer and LSTM Encoder Decoder Models for ASR
,”
2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
,
Sentosa, Singapore
,
Dec. 14–18
, pp.
8
15
.
39.
Gu
,
X.
,
See
,
K. W.
,
Li
,
P.
,
Shan
,
K.
,
Wang
,
Y.
,
Zhao
,
L.
,
Lim
,
K. C.
, and
Zhang
,
N.
,
2023
, “
A Novel State-of-Health Estimation for the Lithium-Ion Battery Using a Convolutional Neural Network and Transformer Model
,”
Energy
,
262
, p.
125501
.
40.
Gomez
,
W.
,
Wang
,
F.-K.
, and
Chou
,
J.-H.
,
2024
, “
Li-Ion Battery Capacity Prediction Using Improved Temporal Fusion Transformer Model
,”
Energy
,
296
, p.
131114
.
41.
Ma
,
Y.
,
Shan
,
C.
,
Gao
,
J.
, and
Chen
,
H.
,
2022
, “
A Novel Method for State of Health Estimation of Lithium-Ion Batteries Based on Improved LSTM and Health Indicators Extraction
,”
Energy
,
251
, p.
123973
.
42.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
.
43.
Yao
,
X.-Y.
,
Chen
,
G.
,
Pecht
,
M.
, and
Chen
,
B.
,
2023
, “
A Novel Graph-Based Framework for State of Health Prediction of Lithium-Ion Battery
,”
J. Energy Storage
,
58
, p.
106437
.
44.
Guo
,
P.
,
Cheng
,
Z.
, and
Yang
,
L.
,
2019
, “
A Data-Driven Remaining Capacity Estimation Approach for Lithium-Ion Batteries Based on Charging Health Feature Extraction
,”
J. Power Sources
,
412
, pp.
442
450
.
45.
Beganovic
,
N.
, and
Söffker
,
D.
,
2019
, “
Estimation of Remaining Useful Lifetime of Lithium-Ion Battery Based on Acoustic Emission Measurements
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
041901
.
46.
Li
,
Y.
,
Stroe
,
D.-I.
,
Cheng
,
Y.
,
Sheng
,
H.
,
Sui
,
X.
, and
Teodorescu
,
R.
,
2021
, “
On the Feature Selection for Battery State of Health Estimation Based on Charging–Discharging Profiles
,”
J. Energy Storage
,
33
, p.
102122
.
47.
NASA Open Data Portal
. “Li-Ion Battery Aging Datasets.” https://data.nasa.gov/dataset/Li-ion-Battery-Aging-Datasets/uj5r-zjdb, Accessed March 11, 2023.
48.
Khumprom
,
P.
, and
Yodo
,
N.
,
2019
, “
A Data-Driven Predictive Prognostic Model for Lithium-Ion Batteries Based on a Deep Learning Algorithm
,”
Energies
,
12
(
4
), p.
660
.
49.
Kirchev
,
A.
,
2015
, “Chapter 20—Battery Management and Battery Diagnostics,”
Electrochemical Energy Storage for Renewable Sources and Grid Balancing
,
P. T.
Moseley
, and
J.
Garche
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
411
435
.
50.
Wang
,
H.
,
Frisco
,
S.
,
Gottlieb
,
E.
,
Yuan
,
R.
, and
Whitacre
,
J. F.
,
2019
, “
Capacity Degradation in Commercial Li-Ion Cells: The Effects of Charge Protocol and Temperature
,”
J. Power Sources
,
426
, pp.
67
73
.
51.
Xiong
,
R.
,
Sun
,
Y.
,
Wang
,
C.
,
Tian
,
J.
,
Chen
,
X.
,
Li
,
H.
, and
Zhang
,
Q.
,
2023
, “
A Data-Driven Method for Extracting Aging Features to Accurately Predict the Battery Health
,”
Energy Storage Mater.
,
57
, pp.
460
470
.
52.
Wu
,
N.
,
Green
,
B.
,
Ben
,
X.
, and
O’Banion
,
S.
,
2020
, “Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case”.
53.
Kunlong
,
C.
,
Jiuchun
,
J.
,
Fangdan
,
Z.
,
Bingxiang
,
S.
, and
Yanru
,
Z.
,
2016
, “
SOH Estimation for Lithium-Ion Batteries: A Cointegration and Error Correction Approach
,”
2016 IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Ottawa, ON, Canada
,
June 20–22
pp.
1
6
.
You do not currently have access to this content.