Abstract

A reasonable coal seam permeability model should be established to accurately estimate the extraction effectiveness of coalbed methane (CBM). Existing permeability models typically ignore the influence of pore structure parameters on the permeability, leading to an overestimation of the measured permeability, and consequently, the CBM production cannot be effectively predicted. This paper presents a novel permeability model based on discrete pore structures at the micro–nano scale. The model considers the interaction between the pore fractal geometry parameters, coal deformation, and CBM transport inside these pores. The contributions of key pore geometry parameters, including the maximum pore diameter, minimum pore diameter, porosity, and fractal dimensions, to the initial permeability were investigated. A numerical analysis showed that the influence of fractal dimension on the permeability is finally reflected in the influence of pore structure parameters. The initial permeability is exponential to the minimum pore diameter and proportional to the maximum pore diameter and porosity. In addition, the macroscopic permeability of the coal is positively correlated with the maximum pore diameter, minimum pore diameter, and porosity, with the minimum pore diameter having the most significant influence on the permeability evolution process. This research provides a theoretical foundation for revealing the gas flow mechanism within coal seams and enhancing the extraction effectiveness of CBM.

References

1.
Luo
,
Y.
,
Xia
,
B.
,
Li
,
H.
,
Hu
,
H.
,
Wu
,
M.
, and
Ji
,
K.
,
2021
, “
Fractal Permeability Model for Dual-Porosity Media Embedded With Natural Tortuous Fractures
,”
Fuel
,
295
, p.
120610
.
2.
Du
,
M.
,
Gao
,
F.
,
Cai
,
C.
,
Su
,
S.
, and
Wang
,
Z.
,
2022
, “
Differences in Petrophysical and Mechanical Properties Between Low- and Middle-Rank Coal Subjected to Liquid Nitrogen Cooling in Coalbed Methane Mining
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042303
.
3.
Wu
,
H.
,
Yao
,
Y. B.
,
Liu
,
D. M.
, and
Cui
,
C.
,
2020
, “
An Analytical Model for Coalbed Methane Transport Through Nanopores Coupling Multiple Flow Regimes
,”
J. Nat. Gas Sci. Eng.
,
82
, p.
103500
.
4.
Du
,
Z.
,
Huang
,
Q.
,
Guo
,
J.
,
Gao
,
F.
, and
Du
,
Y.
,
2020
, “
The Occurrence of Nano- and Micro-Scale Pores and Their Controls on the Selective Migration of Gases in the Coals of Different Ranks
,”
Fuel
,
264
, p.
116748
.
5.
Lu
,
W. Y.
,
Huang
,
B. X.
, and
Zhao
,
X. L.
,
2019
, “
A Review of Recent Research and Development of the Effect of Hydraulic Fracturing on Gas Adsorption and Desorption in Coal Seams
,”
Adsorp. Sci. Technol.
,
37
(
5–6
), pp.
509
529
.
6.
Liu
,
G.
,
Liu
,
J.
,
Liu
,
L.
,
Ye
,
D.
, and
Gao
,
F.
,
2019
, “
A Fractal Approach to Fully-Couple Coal Deformation and Gas Flow
,”
Fuel
,
240
, pp.
219
236
.
7.
Zhai
,
J. T.
,
Wang
,
J. L.
, and
Lu
,
G. W.
,
2018
, “
Permeability Characteristics of Remolded Tectonically Deformed Coal and Its Influence Factors
,”
J. Nat. Gas Sci. Eng.
,
53
, pp.
22
31
.
8.
Hamidreza
,
Y.
, and
Ali
,
J.
,
2019
, “
Application of Lauryl Betaine in Enhanced Oil Recovery: A Comparative
,”
Petroleum
,
5
(
2
), pp.
123
127
.
9.
Yu
,
B. M.
, and
Cheng
,
P.
,
2002
, “
A Fractal Permeability Model for Bi-Dispersed Porous Media
,”
Int. J. Heat Mass Transfer
,
45
(
14
), pp.
2983
2993
.
10.
Vasilenko
,
T.
,
Кirillov
,
А.
,
Islamov
,
A.
,
Doroshkevich
,
A.
,
Łudzik
,
K.
,
Chudoba
,
D. M.
, and
Mita
,
C.
,
2022
, “
Permeability of a Coal Seam With Respect to Fractal Features of Pore Space of Fossil Coals
,”
Fuel
,
329
, p.
125113
.
11.
Hamidreza
,
Y.
, and
Ali
,
H.
,
2018
, “
Effect of Amphoteric Surfactant on Phase Behavior of Hydrocarbon-Electrolyte-Water System—An Application in Enhanced Oil Recovery
,”
J. Dispersion Sci. Technol.
,
39
(
4
), pp.
522
530
.
12.
Yan
,
M.
,
Zhou
,
M.
,
Li
,
S.
,
Lin
,
H.
,
Zhang
,
K.
,
Zhang
,
B.
, and
Shu
,
C.-M.
,
2021
, “
Numerical Investigation on the Influence of Micropore Structure Characteristics on Gas Seepage in Coal With Lattice Boltzmann Method
,”
Energy
,
230
, p.
120773
.
13.
Wang
,
F. Y.
, and
Cheng
,
H.
,
2020
, “
A Fractal Permeability Model for 2D Complex Tortuous Fractured Porous Media
,”
J. Pet. Sci. Eng.
,
188
, p.
106938
.
14.
Davarpanah
,
A.
,
Mirshekari
,
B.
,
Behbahani
,
T. J.
, and
Hemmati
,
M.
,
2018
, “
Integrated Production Logging Tools Approach for Convenient Experimental Individual Layer Permeability Measurements in a Multi-Layered Fractured Reservoir
,”
J. Pet. Explor. Prod. Technol.
,
8
(
3
), pp.
743
751
.
15.
Alafnan
,
S.
,
2022
, “
Carbon Dioxide and Methane Sequestration in Organic-Rich Shales: Nanoscale Insights Into Adsorption and Transport Mechanisms
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073010
.
16.
Wang
,
B.
,
Li
,
B.
,
Li
,
J.
,
Gao
,
Z.
,
Xu
,
J.
,
Ren
,
C.
, and
Zhang
,
Y.
,
2021
, “
Measurement and Modeling of Coal Adsorption-Permeability Based on the Fractal Method
,”
J. Nat. Gas Sci. Eng.
,
88
, p.
103824
.
17.
Miao
,
T.
,
Yang
,
S.
,
Long
,
Z.
, and
Yu
,
B.
,
2015
, “
Fractal Analysis of Permeability of Dual-Porosity Media Embedded With Random Fractures
,”
Int. J. Heat Mass Transfer
,
88
, pp.
814
821
.
18.
Zhao
,
Z.
,
Ni
,
X. M.
,
Cao
,
Y. X.
, and
Shi
,
Y. X.
,
2021
, “
Application of Fractal Theory to Predict the Coal Permeability of Multi-Scale Pores and Fractures
,”
Energy Rep.
,
7
, pp.
10
18
.
19.
Liu
,
Z.
,
Wang
,
W.
,
Cheng
,
W.
,
Yang
,
H.
, and
Zhao
,
D.
,
2020
, “
Study on the Seepage Characteristics of Coal Based on the Kozeny-Carman Equation and Nuclear Magnetic Resonance Experiment
,”
Fuel
,
266
, p.
177088
.
20.
Yang
,
X.
,
Du
,
Y.
,
Xu
,
Q.
,
Wu
,
F.
,
Zhou
,
T.
, and
Zhao
,
C.
,
2022
, “
Pores Integrated Fractal (PIF) Analysis on Transportation in Porous Media Considering Spatial Distribution of Pores and Genuine Tortuosity
,”
Int. J. Heat Mass Transfer
,
187
, p.
122528
.
21.
Pan
,
Z. j.
, and
Connell
,
L. D.
,
2012
, “
Modelling Permeability for Coal Reservoirs: A Review of Analytical Models and Testing Data
,”
Int. J. Coal Geol.
,
92
, pp.
1
44
.
22.
Ge
,
Z. L.
,
Zhang
,
L.
,
Sun
,
J. Z.
, and
Hu
,
J. H.
,
2019
, “
Fully Coupled Multi-Scale Model for Gas Extraction From Coal Seam Stimulated by Directional Hydraulic Fracturing
,”
Appl. Sci. Basel
,
9
(
21
), p.
4720
.
23.
Xue
,
Y.
,
Dang
,
F.
,
Cao
,
Z.
,
Du
,
F.
,
Ren
,
J.
,
Chang
,
X.
, and
Gao
,
F.
,
2018
, “
Deformation, Permeability and Acoustic Emission Characteristics of Coal Masses Under Mining-Induced Stress Paths
,”
Energies
,
11
(
9
), p.
2233
.
24.
Wang
,
Z.
,
Ge
,
Z.
,
Li
,
R.
,
Zhou
,
Z.
,
Hou
,
Y.
, and
Zhang
,
H.
,
2021
, “
Coupling Effect of Temperature, Gas, and Viscoelastic Surfactant Fracturing Fluid on the Microstructure and Its Fractal Characteristics of Deep Coal
,”
Energy Fuels
,
35
(
23
), pp.
19423
19436
.
25.
Zhang
,
H. B.
,
Liu
,
J. S.
, and
Elsworth
,
D.
,
2008
, “
How Sorption-Induced Matrix Deformation Affects Gas Flow in Coal Seams: A New FE Model
,”
Int. J. Rock Mech. Min. Sci.
,
45
(
8
), pp.
1226
1236
.
26.
Zhang
,
L.
,
Zhou
,
H.
,
Wang
,
X.
,
Zhao
,
J.
,
Ju
,
Y.
, and
Deng
,
T.
,
2022
, “
On Permeability Evolution of Coal Induced by Temperature, Creep, and Matrix-Fracture Interaction
,”
Energy Fuels
,
36
(
3
), pp.
1470
1481
.
27.
Yarveicy
,
H.
,
Habibi
,
A.
,
Pegov
,
S.
,
Zolfaghari
,
A.
, and
Dehghanpour
,
H.
,
2018
, “
Enhancing Oil Recovery by Adding Surfactants in Fracturing Water: A Montney Case Study
,”
SPE Canada Unconventional Resources Conference
,
Alberta, Canada
,
Mar. 13–14
, p.
189829
.
28.
Liu
,
T.
,
Lin
,
B.
,
Yang
,
W.
,
Liu
,
T.
,
Kong
,
J.
,
Huang
,
Z.
,
Wang
,
R.
, and
Zhao
,
Y.
,
2017
, “
Dynamic Diffusion-Based Multifield Coupling Model for Gas Drainage
,”
J. Nat. Gas Sci. Eng.
,
44
, pp.
233
249
.
29.
Wu
,
S.
,
Tang
,
D.
,
Li
,
S.
,
Wu
,
H.
,
Hu
,
X.
, and
Zhu
,
X.
,
2017
, “
Effects of Geological Pressure and Temperature on Permeability Behaviors of Middle-Low Volatile Bituminous Coals in Eastern Ordos Basin
,”
J. Pet. Sci. Eng.
,
153
, pp.
372
384
.
30.
Zepeng
,
W.
,
Zhaolong
,
G.
,
Ruihui
,
L.
,
Xianfeng
,
L.
,
Haoming
,
W.
, and
Shihui
,
G.
,
2022
, “
Effects of Acid-Based Fracturing Fluids With Variable Hydrochloric Acid Contents on the Microstructure of Bituminous Coal: An Experimental Study
,”
Energy
,
244
, p.
122621
.
31.
Hu
,
Y.
,
Liu
,
G.
,
Luo
,
N.
,
Gao
,
F.
,
Yue
,
F.
, and
Gao
,
T.
,
2022
, “
Multi-Field Coupling Deformation of Rock and Multi-scale Flow of Gas in Shale Gas Extraction
,”
Energy
,
238
, p.
121666
.
32.
Liu
,
X. F.
, and
Nie
,
B. S.
,
2016
, “
Fractal Characteristics of Coal Samples Utilizing Image Analysis and Gas Adsorption
,”
Fuel
,
182
, pp.
314
322
.
33.
Yu
,
B. M.
, and
Li
,
J. H.
,
2001
, “
Some Fractal Characters of Porous Media
,”
Fractals
,
9
(
3
), pp.
365
372
.
34.
Xu
,
P.
, and
Yu
,
B. M.
,
2008
, “
Developing a New Form of Permeability and Kozeny-Carman Constant for Homogeneous Porous Media by means of Fractal Geometry
,”
Adv. Water Resour.
,
31
, pp.
74
81
.
35.
Yu
,
B. M.
,
2008
, “
Analysis of Flow in Fractal Porous Media
,”
ASME Appl. Mech. Rev.
,
61
(
5
), p.
050801
.
36.
Tan
,
X.-H.
,
Kui
,
M.-Q.
,
Li
,
X.-P.
,
Mao
,
Z.-L.
, and
Xiao
,
H.
,
2017
, “
Permeability and Porosity Models of Bi-Fractal Porous Media
,”
Int. J. Mod. Phys. B
,
31
(
29
), p.
1750219
.
37.
Guannan
,
L.
,
Dayu
,
Y.
,
Boming
,
Y.
,
Feng
,
G.
, and
Peijian
,
C.
,
2021
, “
A Study on Gas Drainage Considering Coupling Process of Fracture-Pore Microstructure and Coal Deformation
,”
Fractals
,
29
(
2
), p.
2150065
.
38.
Wu
,
Y.
,
Liu
,
J.
,
Elsworth
,
D.
,
Chen
,
Z.
,
Connell
,
L.
, and
Pan
,
Z.
,
2010
, “
Dual Poroelastic Response of a Coal Seam to CO2 Injection
,”
Int. J. Greenh. Gas Control.
,
4
(
4
), pp.
668
678
.
39.
Liu
,
J.
,
Chen
,
Z.
,
Elsworth
,
D.
,
Miao
,
X.
, and
Mao
,
X.
,
2011
, “
Evolution of Coal Permeability From Stress-Controlled to Displacement-Controlled Swelling Conditions
,”
Fuel
,
90
(
10
), pp.
2987
2997
.
40.
Ye
,
D.
,
Liu
,
G.
,
Gao
,
F.
,
Hu
,
Y.
, and
Yue
,
F.
,
2021
, “
A Fractal Model of Thermal-Hydrological-Mechanical Interaction on Coal Seam
,”
Int. J. Therm. Sci.
,
168
, p.
107048
.
41.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
42.
Xue
,
Y.
,
Ranjith
,
P. G.
,
Dang
,
F.
,
Liu
,
J.
,
Wang
,
S.
,
Xia
,
T.
, and
Gao
,
Y.
,
2020
, “
Analysis of Deformation, Permeability and Energy Evolution Characteristics of Coal Mass Around Borehole After Excavation
,”
Nat. Resour. Res.
,
29
(
5
), pp.
3159
3177
.
43.
Chen
,
M.
,
Hosking
,
L. J.
,
Sandford
,
R. J.
, and
Thomas
,
H. R.
,
2020
, “
A Coupled Compressible Flow and Geomechanics Model for Dynamic Fracture Aperture During Carbon Sequestration in Coal
,”
Int. J. Numer. Anal. Methods Geomech.
,
44
(
13
), pp.
1727
1749
.
44.
Talapatra
,
A.
, and
Karim
,
M. M.
,
2020
, “
The Influence of Moisture Content on Coal Deformation and Coal Permeability During Coalbed Methane (CBM) Production in Wet Reservoirs
,”
J. Pet. Explor. Prod. Technol.
,
10
(
5
), pp.
1907
1920
.
45.
Zhang
,
S. W.
,
Liu
,
J. S.
,
Wei
,
M. Y.
, and
Elsworth
,
D.
,
2018
, “
Coal Permeability Maps Under the Influence of Multiple Coupled Processes
,”
Int. J. Coal Geol.
,
187
, pp.
71
82
.
46.
Zhang
,
G.
,
Ranjith
,
P. G.
,
Liang
,
W.
,
Haque
,
A.
,
Perera
,
M. S. A.
, and
Li
,
D.
,
2019
, “
Stress-Dependent Fracture Porosity and Permeability of Fractured Coal: An In-Situ X-ray Tomography Study
,”
Int. J. Coal Geol.
,
213
, p.
103279
.
47.
Wang
,
M.
, and
Pan
,
N.
,
2007
, “
Numerical Analyses of Effective Dielectric Constant of Multiphase Microporous Media
,”
J. Appl. Phys.
,
101
(
11
), p.
114102
.
48.
Li
,
Z.
,
Liu
,
D.
,
Cai
,
Y.
,
Wang
,
Y.
, and
Si
,
G.
,
2020
, “
Evaluation of Coal Petrophysics Incorporating Fractal Characteristics by Mercury Intrusion Porosimetry and Low-Field NMR
,”
Fuel
,
263
, p.
116802
.
49.
Ge
,
Z.
,
Zeng
,
M.
,
Cheng
,
Y.
,
Wang
,
H.
, and
Liu
,
X.
,
2019
, “
Effects of Supercritical CO2 Treatment Temperature on Functional Groups and Pore Structure of Coals
,”
Sustainability
,
11
(
24
), p.
7180
.
50.
Zhang
,
K.
,
Cheng
,
Y.
,
Li
,
W.
,
Hao
,
C.
,
Hu
,
B.
, and
Jiang
,
J.
,
2019
, “
Microcrystalline Characterization and Morphological Structure of Tectonic Anthracite Using XRD, Liquid Nitrogen Adsorption, Mercury Porosimetry, and Micro-CT
,”
Energy Fuels
,
33
(
11
), pp.
10844
10851
.
51.
Zhang
,
K.
,
Cheng
,
Y.
,
Li
,
W.
,
Wu
,
D.
, and
Liu
,
Z.
,
2017
, “
Influence of Supercritical CO2 on Pore Structure and Functional Groups of Coal: Implications for CO2 Sequestration
,”
J. Nat. Gas Sci. Eng.
,
40
, pp.
288
298
.
52.
Zhang
,
L.
,
Chen
,
S.
, and
Zhang
,
C.
,
2020
, “
The Characterization of Bituminous Coal Microstructure and Permeability by Liquid Nitrogen Fracturing Based on MU CT Technology
,”
Fuel
,
262
, p.
116635
.
You do not currently have access to this content.