Abstract

Variable speed operation has emerged as a key direction in the development of pumped storage technology. Maintaining pressure pulsation within the control range is particularly critical for ensuring operational safety of variable-speed pumped storage plants (VSPSPs). However, there is limited research on the relationship between pressure pulsation for pump-turbine and variable speed operation. This paper presents amplitude distribution diagrams of pressure pulsation, obtained from processing model test results of a real VSPSP. Different conditions of variable speed operation are simulated by a numerical model to analyze the influence of operating trajectory on pressure pulsation, and the intensity of pressure pulsation is quantitatively evaluated. According to the results, when the initial speed or speed command increases, the trajectory passes through more regions with high-amplitude pressure pulsation and gradually moves toward the S-shaped region, leading to pressure oscillations. When speed command reduces, maximum pressure pulsation at the volute inlet and in the draft tube can be reduced by 82.18% and 63.24% at most, and the evaluation score can be increased by 28.77%. The findings of this study can offer theoretical guidance for operating VSPSPs.

References

1.
Iliev
,
I.
,
Trivedi
,
C.
, and
Dahlhaug
,
O. G.
,
2019
, “
Variable-Speed Operation of Francis Turbines: A Review of the Perspectives and Challenges
,”
Renewable Sustainable Energy Rev.
,
103
, pp.
109
121
.
2.
Valavi
,
M.
, and
Nysveen
,
A.
,
2018
, “
Variable-Speed Operation of Hydropower Plants: A Look at the Past, Present, and Future
,”
IEEE Ind. Appl. Mag.
,
24
(
5
), pp.
18
27
.
3.
Ciocan
,
G. D.
,
Teller
,
O.
, and
Czerwinski
,
F.
,
2012
, “
Variable Speed Pump-Turbines Technology
,”
UPB Sci. Bull. D: Mech. Eng.
,
74
(
1
), pp.
33
42
.
4.
Guo
,
T.
,
Liu
,
G.
,
Yu
,
L.
, and
Koritarov
,
V.
,
2013
,
Adjustable Speed Pumped-Storage Hydro-Generator (PSH) Evaluation by PLEXOS
,
Energy Exemplar LLC
.
5.
Radu
,
R.
,
Micheli
,
D.
,
Alessandrini
,
S.
,
Casula
,
I.
, and
Radu
,
B.
,
2015
, “
Modeling and Performance Analysis of an Integrated System: Variable Speed Operated Internal Combustion Engine Combined Heat and Power Unit–Photovoltaic Array
,”
ASME J. Energy Res. Technol.
,
137
(
3
), p.
032001
.
6.
Zeng
,
W.
,
Yang
,
J.
,
Hu
,
J.
, and
Yang
,
J.
,
2016
, “
Guide-Vane Closing Schemes for Pump-Turbines Based on Transient Characteristics in S-Shaped Region
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051302
.
7.
Amiri
,
K.
,
Mulu
,
B.
,
Raisee
,
M.
, and
Cervantes
,
M. J.
,
2016
, “
Unsteady Pressure Measurements on the Runner of a Kaplan Turbine During Load Acceptance and Load Rejection
,”
J. Hydraul. Res.
,
54
(
1
), pp.
56
73
.
8.
Xia
,
L.
,
Cheng
,
Y.
, and
Cai
,
F.
,
2017
, “
Pressure Pulsation Characteristics of a Model Pump-Turbine Operating in the S-Shaped Region: CFD Simulations
,”
Int. J. Fluid Mach. Syst.
,
10
(
3
), pp.
287
295
.
9.
Trivedi
,
C.
,
Agnalt
,
E.
, and
Dahlhaug
,
O. G.
,
2018
, “
Experimental Study of a Francis Turbine Under Variable-Speed and Discharge Conditions
,”
Renewable Energy
,
119
, pp.
447
458
.
10.
Zuo
,
Z.
,
Liu
,
S.
,
Sun
,
Y.
, and
Wu
,
Y.
,
2015
, “
Pressure Fluctuations in the Vaneless Space of High-Head Pump-Turbines—A Review
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
965
974
.
11.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051104
.
12.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041101
.
13.
Alligne
,
S.
,
Nicolet
,
C.
,
Tsujimoto
,
Y.
, and
Avellan
,
F.
,
2014
, “
Cavitation Surge Modelling in Francis Turbine Draft Tube
,”
J. Hydraul. Res.
,
52
(
3
), pp.
399
411
.
14.
Xu
,
B.
,
Feng
,
Q.
, and
Yu
,
X.
,
2009
, “
Prediction of Pressure Pulsation for the Reciprocating Compressor System Using Finite Disturbance Theory
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031007
.
15.
Zhang
,
L.
,
Wu
,
Q.
,
Ma
,
Z.
, and
Wang
,
X.
,
2019
, “
Transient Vibration Analysis of Unit-Plant Structure for Hydropower Station in Sudden Load Increasing Process
,”
Mech. Syst. Signal Process.
,
120
, pp.
486
504
.
16.
Marshek
,
K. M.
,
Naji
,
M. R.
, and
Andries
,
G. C.
,
1982
, “
An Experimental Study of Rotor-Filter Pump Performance
,”
ASME J. Energy Res. Technol.
,
104
(
3
), pp.
259
268
.
17.
Hopkins
,
B. J.
,
Padhye
,
N.
,
Greenlee
,
A.
,
Torres
,
J.
,
Thomas
,
L.
,
Ljubicic
,
D. M.
,
Kassner
,
M. P.
, and
Slocum
,
A. H.
,
2014
, “
Damping Pressure Pulsations in a Wave-Powered Desalination System
,”
ASME J. Energy Res. Technol.
,
136
(
2
), p.
021205
.
18.
Song
,
X.
, and
Liu
,
C.
,
2020
, “
Experimental Investigation of Floor-Attached Vortex Effects on the Pressure Pulsation at the Bottom of the Axial Flow Pump Sump
,”
Renewable Energy
,
145
, pp.
2327
2336
.
19.
Huang
,
X.
,
Oram
,
C.
, and
Sick
,
M.
,
2014
, “
Static and Dynamic Stress Analyses of the Prototype High Head Francis Runner Based on Site Measurement
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032052
.
20.
Hu
,
J.
,
Yang
,
J.
,
Zeng
,
W.
, and
Yang
,
J.
,
2018
, “
Transient Pressure Analysis of a Prototype Pump Turbine: Field Tests and Simulation
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071102
.
21.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Gandhi
,
B.
, and
Dahlhaug
,
O. G.
,
2014
, “
Transient Pressure Measurements on a High Head Model Francis Turbine During Emergency Shutdown, Total Load Rejection, and Runaway
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121107
.
22.
Mosca
,
R.
,
Maw Lim
,
S.
, and
Mihaescu
,
M.
,
2022
, “
Turbocharger Radial Turbine Response to Pulse Amplitude
,”
ASME J. Energy Res. Technol.
,
144
(
8
), p.
082111
.
23.
Xiang
,
R.
,
Wang
,
T.
,
Fang
,
Y.
,
Yu
,
H.
,
Zhou
,
M.
, and
Zhang
,
X.
,
2022
, “
Effect of Blade Curve Shape on the Hydraulic Performance and Pressure Pulsation of a Pump as Turbine
,”
Phys. Fluids
,
34
(
8
), p.
085130
.
24.
Guo
,
P.
,
Zhang
,
H.
, and
Guo
,
D.
,
2020
, “
Dynamic Characteristics of a Hydro-Turbine Governing System Considering Draft Tube Pressure Pulsation
,”
IET Renewable Power Gener.
,
14
(
7
), pp.
1210
1218
.
25.
Rodriguez
,
C. G.
,
Egusquiza
,
E.
, and
Santos
,
I. F.
,
2007
, “
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1428
1435
.
26.
Favrel
,
A.
,
Landry
,
C.
,
Müller
,
A.
, and
Avellan
,
F.
,
2012
, “
Experimental Identification and Study of Hydraulic Resonance Test Rig With Francis Turbine Operating at Partial Load
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p.
062064
.
27.
Trivedi
,
C.
,
2021
, “
Study of Pressure Pulsations in a Francis Turbine Designed for Frequent Start-Stop
,”
ASME J. Energy Res. Technol.
,
143
(
8
), p.
081302
.
28.
Trivedi
,
C.
,
Agnalt
,
E.
, and
Dahlhaug
,
O. G.
,
2017
, “
Investigations of Unsteady Pressure Loading in a Francis Turbine During Variable-Speed Operation
,”
Renewable Energy
,
113
, pp.
397
410
.
29.
Martinez-Lucas
,
G.
,
Perez-Diaz
,
J. I.
,
Chazarra
,
M.
,
Sarasua
,
J. I.
,
Cavazzini
,
G.
,
Pavesi
,
G.
, and
Ardizzon
,
G.
,
2018
, “
Risk of Penstock Fatigue in Pumped-Storage Power Plants Operating With Variable Speed in Pumping Mode
,”
Renewable Energy
,
133
, pp.
636
646
.
30.
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2016
, “
Numerical Analysis of the Transient Behaviour of a Variable Speed Pump-Turbine During a Pumping Power Reduction Scenario
,”
Energies
,
9
(
7
), p.
534
.
31.
Wang
,
H.
,
Liao
,
H.
,
Wei
,
J.
,
Liu
,
Y.
,
Niu
,
W.
,
Latham
,
J.
,
Xiang
,
J.
,
Liu
,
J.
, and
Chen
,
J.
,
2022
, “
Pressure Drop Model and Jet Features of Ultra High Pressure Water Jet for Downhole Intensifier
,”
ASME J. Energy Res. Technol.
,
144
(
12
), p.
123005
.
32.
Rezk
,
A.
,
Sharma
,
S.
,
Barrans
,
S.
,
Hossain
,
A. K.
,
Lee
,
S. P.
, and
Imran
,
M.
,
2021
, “
Computational Study of a Radial Flow Turbine Operates Under Various Pulsating Flow Shapes and Amplitudes
,”
ASME J. Energy Res. Technol.
,
143
(
12
), p.
120904
.
33.
Wu
,
C.
,
Zhang
,
W.
,
Wu
,
P.
,
Yi
,
J.
,
Ye
,
H.
,
Huang
,
B.
, and
Wu
,
D.
,
2021
, “
Effects of Blade Pressure Side Modification on Unsteady Pressure Pulsation and Flow Structures in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111208
.
34.
Cui
,
B.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2021
, “
Analysis of the Pressure Pulsation and Vibration in a Low-Specific-Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
143
(
2
), p.
021201
.
35.
Yang
,
J.
,
Yang
,
J.
,
Wang
,
C.
, and
Bao
,
H.
,
2014
, “
Simulation of Pressure Pulsation of a Pump Turbine in Load Rejection
,”
J. Hydrol. Eng.
,
33
(
4
), pp.
286
294
.
36.
Ye
,
J.
,
Zeng
,
W.
,
Zhao
,
Z.
,
Yang
,
J.
, and
Yang
,
J.
,
2020
, “
Optimization of Pump Turbine Closing Operation to Minimize Water Hammer and Pulsating Pressures During Load Rejection
,”
Energies
,
13
(
4
), p.
1000
.
37.
Li
,
Y.
,
Yang
,
W.
,
Huang
,
Y.
,
Ma
,
W.
,
Zhao
,
Z.
,
Yang
,
J.
, and
Yang
,
J.
,
2022
, “
Variation Law of Pressure Pulsation During Variable Speed Operation of Pumped Storage Units
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
1079
(
1
), p.
012111
.
38.
Yang
,
W.
, and
Yang
,
J.
,
2019
, “
Advantage of Variable-Speed Pumped Storage Plants for Mitigating Wind Power Variations: Integrated Modelling and Performance Assessment
,”
Appl. Energy
,
237
, pp.
720
732
.
39.
Huang
,
Y.
,
Yang
,
W.
,
Liao
,
Y.
,
Zhao
,
Z.
,
Ma
,
W.
,
Yang
,
J.
, and
Yang
,
J.
,
2022
, “
Improved Transfer Function Method for Flexible Simulation of Hydraulic-Mechanical-Electrical Transient Processes of Hydro-Power Plants
,”
Renewable Energy
,
196
, pp.
390
404
.
40.
Huang
,
Y.
,
Yang
,
W.
,
Zhao
,
Z.
,
Han
,
W.
,
Li
,
Y.
, and
Yang
,
J.
,
2023
, “
Dynamic Modeling and Favorable Speed Command of Variable-Speed Pumped-Storage Unit During Power Regulation
,”
Renewable Energy
,
206
, pp.
769
783
.
41.
Zheng
,
X.
,
Guo
,
P.
,
Tong
,
H.
, and
Luo
,
X.
,
2012
, “
Improved Suter-Transformation for Complete Characteristic Curves of Pump-Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p.
062015
.
42.
Li
,
C.
,
Mao
,
Y.
,
Yang
,
J.
,
Wang
,
Z.
, and
Xu
,
Y.
,
2017
, “
A Nonlinear Generalized Predictive Control for Pumped Storage Unit
,”
Renewable Energy
,
114
, pp.
945
959
.
43.
Chaudhry
,
M. H.
,
1979
,
Applied Hydraulic Transients
,
Springer
,
New York
.
44.
T/CEC 5010
,
2019
,
Guide of Calculation and Analysis for Hydraulic Transient Process of Pumped Storage Power Stations
,
China Electric Power Press
,
Beijing
.
45.
Li
,
Y.
,
Yang
,
W.
,
Zhao
,
Z.
,
Huang
,
Y.
,
Liao
,
Y.
, and
Yang
,
J.
,
2022
, “
Ancillary Service Quantitative Evaluation for Primary Frequency Regulation of Pumped Storage Units Considering Refined Hydraulic Characteristics
,”
J. Energy Storage
,
45
, p.
103414
.
46.
Zhao
,
Z.
,
Yang
,
J.
,
Yang
,
W.
,
Hu
,
J.
, and
Chen
,
M.
,
2019
, “
A Coordinated Optimization Framework for Flexible Operation of Pumped Storage Hydropower System: Nonlinear Modeling, Strategy Optimization and Decision Making
,”
Energy Convers. Manage.
,
194
, pp.
75
93
.
You do not currently have access to this content.