Abstract

Imbibition under overburden pressure can simulate the imbibition behavior in reservoir conditions during hydraulic fracturing, about which the mechanism is still unclear. This study investigated the imbibition with overburden pressure using a nuclear magnetic resonance (NMR) displacement design. The main contribution of this study is that the initial imbibition rate under confining pressure can reflect the pore connectivity of reservoirs under overburden pressure and a method for appraising the pore connectivity under confining pressure was established. The tight sandstone samples were collected from the Upper Paleozoic Taiyuan and Shihezi Formations in Ordos Basin. The Taiyuan Formation presents the apparent double-peak structure from NMR spectra, and liquid fills into small pore preferentially as a whole. When the imbibition time is on a square root scale, the cumulative imbibition height at the initial imbibition period is not stable, which deviates from the linear principle, and the initial imbibition rate ranges from 0.077 to 0.1145. The Shihezi Formation shows a dominant peak structure from NMR spectra, and the liquid has no obvious filling order as a whole. When the imbibition time is on a square root scale, the cumulative imbibition height at the initial imbibition period also deviates from the linear principle, and the initial imbibition rate ranges from 0.0641 to 0.1619.

References

1.
Wang
,
S.
,
Qin
,
C.
,
Feng
,
Q.
,
Javadpour
,
F.
, and
Rui
,
Z.
,
2021
, “
A Framework for Predicting the Production Performance of Unconventional Resources Using Deep Learning
,”
Appl. Energy
,
295
, p.
117016
.
2.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp.
900
905
.
3.
Guo
,
T.
,
Tang
,
S.
,
Liu
,
S.
,
Liu
,
X.
,
Xu
,
J.
,
Qi
,
N.
, and
Rui
,
Z.
,
2021
, “
Physical Simulation of Hydraulic Fracturing of Large-Sized Tight Sandstone Outcrops
,”
SPE J.
,
26
(
1
), pp.
372
393
.
4.
He
,
Y.
,
Cheng
,
S.
,
Sun
,
Z.
,
Chai
,
Z.
, and
Rui
,
Z.
,
2020
, “
Improving oil Recovery Through Fracture Injection and Production of Multiple Fractured Horizontal Wells
,”
J. Energy Res. Technol.
,
142
(
5
), p.
053002
.
5.
Jiang
,
G.
,
Sun
,
J.
,
He
,
Y.
,
Cui
,
K.
,
Dong
,
T.
,
Yang
,
L.
,
Yang
,
X.
, and
Wang
,
X.
,
2022
, “
Novel Water-Based Drilling and Completion Fluid Technology to Improve Wellbore Quality During Drilling and Protect Unconventional Reservoirs
,”
Engineering
,
18
, pp.
129
142
.
6.
Sheng
,
G.
,
Su
,
Y.
, and
Wang
,
W.
,
2019
, “
A new Fractal Approach for Describing Induced-Fracture Porosity/Permeability/ Compressibility in Stimulated Unconventional Reservoirs
,”
J. Pet. Sci. Eng.
,
179
, pp.
855
866
.
7.
Liang
,
T.
,
Xu
,
K.
,
Lu
,
J.
,
Nguyen
,
Q.
, and
DiCarlo
,
D.
,
2020
, “
Evaluating the Performance of Surfactants in Enhancing Flowback and Permeability After Hydraulic Fracturing Through a Microfluidic Model
,”
SPE J.
,
25
(
1
), pp.
268
287
.
8.
Ali
,
M.
, and
Hascakir
,
B.
,
2017
, “
Water/Rock Interaction for Eagle Ford, Marcellus, Green River, and Barnett Shale Samples and Implications for Hydraulic-Fracturing-Fluid Engineering
,”
SPE J.
,
22
(
1
), pp.
162
171
.
9.
Luo
,
Q.
,
Fariborz
,
G.
,
Zhong
,
N.
,
Wang
,
Y.
,
Qiu
,
N.
,
Skovsted
,
C. B.
,
Suchý
,
V.
, et al
,
2020
, “
Graptolites as Fossil geo-Thermometers and Source Material of Hydrocarbons: An Overview of Four Decades of Progress
,”
Earth Sci. Rev.
,
200
, p.
103000
.
10.
Li
,
C.
,
Lin
,
M.
,
Ji
,
L.
,
Jiang
,
W.
, and
Cao
,
G.
,
2018
, “
Rapid Evaluation of the Permeability of Organic-Rich Shale Using the 3D Intermingled-Fractal Model
,”
SPE J.
,
23
(
6
), pp.
2175
2187
.
11.
Meng
,
M.
,
Shen
,
Y.
,
Ge
,
H.
,
Xu
,
X.
, and
Wu
,
Y.
,
2020
, “
The Effect of Fracturing Fluid Saturation on Natural gas Flow Behavior in Tight Reservoirs
,”
Energies
,
13
(
20
), p.
5278
.
12.
Liang
,
X.
,
Liang
,
T.
,
Zhou
,
F.
,
Wang
,
C.
,
Yang
,
K.
,
Wei
,
D.
,
Luo
,
Y.
, and
Zhang
,
D.
,
2021
, “
Impact of Shut-in Time on Production After Hydraulic Fracturing in Fractured Shale Gas Formation: An Experimental Study
,”
J. Nat. Gas Sci. Eng.
,
88
, p.
103773
.
13.
Meng
,
M.
,
Ge
,
H.
,
Ji
,
W.
,
Wang
,
X.
, and
Chen
,
L.
,
2015
, “
Investigation on the Variation of Shale Permeability With Spontaneous Imbibition Time: Sandstones and Volcanic Rocks as Comparative Study
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
1546
1554
.
14.
Liang
,
X.
,
Zhou
,
F.
,
Liang
,
T.
,
Wang
,
C.
,
Wang
,
J.
, and
Yuan
,
S.
,
2020
, “
Impacts of Low Harm Fracturing Fluid on Fossil Hydrogen Energy Production in Tight Reservoirs
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
21195
21204
.
15.
Deng
,
L.
, and
King
,
M. J.
,
2019
, “
Theoretical Investigation of the Transition From Spontaneous to Forced Imbibition
,”
SPE J.
,
24
(
1
), pp.
215
229
.
16.
Alvarez
,
J. O.
,
Saputra
,
I. W.
, and
Schechter
,
D. S.
,
2018
, “
The Impact of Surfactant Imbibition and Adsorption for Improving Oil Recovery in the Wolfcamp and Eagle Ford Reservoirs
,”
SPE J.
,
23
(
6
), pp.
2103
2117
.
17.
Meng
,
M.
,
Ge
,
H.
,
Shen
,
Y.
, and
Ji
,
W.
,
2021
, “
Evaluation of the Pore Structure Variation During Hydraulic Fracturing in Marine Shale Reservoirs
,”
J. Energy Res. Technol.
,
143
(
8
), p.
083002
.
18.
Zhao
,
P.
,
Wang
,
X.
,
Fan
,
X.
,
Wang
,
X.
,
Zeng
,
F.
,
Zhang
,
M.
,
Meng
,
F.
, and
Nie
,
W.
,
2021
, “
The Influence of Lamina Density and Occurrence on the Permeability of Lamellar Shale After Hydration
,”
Crystals
,
11
(
12
), p.
1524
.
19.
Zhao
,
Z.
,
Jin
,
H.
,
Lu
,
C.
, and
Chen
,
M.
,
2021
, “
Hydration Effects on Mechanical Properties of Shale
,”
ARMA/DGS/SEG 2nd International Geomechanics Symposium
,
Virtual online
,
Nov. 1–4
, pp.
1
9
.
20.
Yuan
,
B.
,
Wang
,
Y.
, and
Wei
,
N.
,
2019
, “
The Effects of Fracturing Fluid Retention on Permeability of Shale Reservoirs
,”
Energy Procedia
,
158
, pp.
5934
5939
.
21.
Meng
,
M.
,
Ge
,
H.
,
Ji
,
W.
,
Shen
,
Y.
, and
Su
,
S.
,
2015
, “
Monitor the Process of Shale Spontaneous Imbibition in Co-Current and Counter-Current Displacing Gas by Using Low Field Nuclear Magnetic Resonance Method
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
336
345
.
22.
Hu
,
Q.
,
Ewing
,
R. P.
, and
Rowe
,
H. D.
,
2015
, “
Low Nanopore Connectivity Limits Gas Production in Barnett Formation
,”
J. Geophys. Res.: Solid Earth
,
120
(
12
), pp.
8073
8087
.
23.
Lyu
,
C.
,
Ning
,
Z.
,
Chen
,
M.
, and
Wang
,
Q.
,
2019
, “
Experimental Study of Boundary Condition Effects on Spontaneous Imbibition in Tight Sandstones
,”
Fuel
,
235
, pp.
374
383
.
24.
Yildiz
,
H. O.
,
Gokmen
,
M.
, and
Cesur
,
Y.
,
2006
, “
Effect of Shape Factor, Characteristic Length, and Boundary Conditions on Spontaneous Imbibition
,”
J. Pet. Sci. Eng.
,
53
(
3
), pp.
158
170
.
25.
Zhang
,
X.
,
Morrow
,
N. R.
, and
Ma
,
S.
,
1996
, “
Experimental Verification of a Modified Scaling Group for Spontaneous Imbibition
,”
SPE Reservoir. Eng.
,
11
(
4
), pp.
280
285
.
26.
Meng
,
Q.
,
Cai
,
J.
, and
Wang
,
J.
,
2019
, “
Scaling of Countercurrent Imbibition in 2D Matrix Blocks With Different Boundary Conditions
,”
SPE J.
,
24
(
3
), pp.
1179
1191
.
27.
Gao
,
Z.
, and
Hu
,
Q.
,
2016
, “
Wettability of Mississippian Barnett Shale Samples at Different Depths: Investigations From Directional Spontaneous Imbibition
,”
AAPG Bull.
,
100
(
1
), pp.
101
114
.
28.
Makhanov
,
K.
,
Dehghanpour
,
H.
, and
Kuru
,
E.
,
2012
, “
An Experimental Study of Spontaneous Imbibition in Horn River Shales
,”
SPE Canadian Unconventional Resources Conference
,
Society of Petroleum Engineers
,
Calgary, Alberta, Canada
,
Oct. 30–Nov. 1
, pp.
1
14
.
29.
Gao
,
Z.
, and
Hu
,
Q.
,
2016
, “
Initial Water Saturation and Imbibition Fluid Affect Spontaneous Imbibition Into Barnett Shale Samples
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
541
551
.
30.
Li
,
K.
,
Chow
,
K.
, and
Horne
,
R. N.
,
2002
, “
Effect of Initial Water Saturation on Spontaneous Water Imbibition
,”
SPE Western Regional/AAPG Pacific Section Joint Meeting
,
Anchorage, AK
,
May 20–22
, pp.
1
9
.
31.
Ge
,
H.
,
Yang
,
L.
,
Shen
,
Y.
,
Ren
,
K.
,
Meng
,
F.
,
Ji
,
W.
, and
Wu
,
S.
,
2015
, “
Experimental Investigation of Shale Imbibition Capacity and the Factors Influencing Loss of Hydraulic Fracturing Fluids
,”
Pet. Sci.
,
12
(
4
), pp.
636
650
.
32.
Xiao
,
W.
,
Zhang
,
J.
,
Du
,
Y.
,
Zhao
,
J.
, and
Zhao
,
Z.
,
2019
, “
An Experimental Study on NMR Response Characteristics of Imbibition Subjected to Pressure in Shale (in Chinese Edition)
,”
J. Southwest Pet. Univ., Sci. Technol. Ed.
,
41
(
6
), pp.
13
18
.
33.
Guo
,
J.
,
Tao
,
L.
,
Hu
,
K.
,
Deng
,
X. a.
,
Chen
,
C.
,
Li
,
M.
, and
Zhao
,
Z.
,
2022
, “
Experiment on Imbibition Law of Aqueous Phase in Shale Reservoir (in Chinese Edition)
,”
Acta Petrol. Sin.
,
43
(
9
), pp.
1295
1304
.
34.
Wang
,
C.
,
Gao
,
H.
,
Gao
,
Y.
, and
Fan
,
H.
,
2020
, “
Influence of Pressure on Spontaneous Imbibition in Tight Sandstone Reservoirs
,”
Energy Fuels
,
34
(
8
), pp.
9275
9282
.
35.
Tian
,
W.
,
Wu
,
K.
,
Gao
,
Y.
,
Chen
,
Z.
,
Gao
,
Y.
, and
Li
,
J.
,
2021
, “
A Critical Review of Enhanced Oil Recovery by Imbibition: Theory and Practice
,”
Energy Fuels
,
35
(
7
), pp.
5643
5670
.
36.
Xu
,
G.
,
Jiang
,
Y.
,
Shi
,
Y.
,
Han
,
Y.
,
Wang
,
M.
, and
Zeng
,
X.
,
2020
, “
Experimental Investigations of Fracturing Fluid Flowback and Retention Under Forced Imbibition in Fossil Hydrogen Energy Development of Tight Oil Based on Nuclear Magnetic Resonance
,”
Int. J. Hydrogen Energy
,
45
(
24
), pp.
13256
13271
.
37.
Dai
,
C.
,
Cheng
,
R.
,
Sun
,
X.
,
Liu
,
Y.
,
Zhou
,
H.
,
Wu
,
Y.
,
You
,
Q.
,
Zhang
,
Y.
, and
Sun
,
Y.
,
2019
, “
Oil Migration in Nanometer to Micrometer Sized Pores of Tight oil Sandstone During Dynamic Surfactant Imbibition With Online NMR
,”
Fuel
,
245
, pp.
544
553
.
38.
Xiao
,
L.
,
Zhu
,
G.
,
Zhang
,
L.
,
Yao
,
J.
, and
Sun
,
H.
,
2021
, “
Effects of Pore-Size Disorder and Wettability on Forced Imbibition in Porous Media
,”
J. Pet. Sci. Eng.
,
201
, p.
108485
.
39.
Zhong
,
Y.
,
Zhang
,
H.
,
Kuru
,
E.
,
Kuang
,
J.
, and
She
,
J.
,
2019
, “
The Forced Imbibition Model for Fracturing Fluid Into Gas Shales
,”
J. Pet. Sci. Eng.
,
179
, pp.
684
695
.
40.
Dou
,
L.
,
Xiao
,
Y.
,
Gao
,
H.
,
Wang
,
R.
,
Liu
,
C.
, and
Sun
,
H.
,
2021
, “
The Study of Enhanced Displacement Efficiency in Tight Sandstone From the Combination of Spontaneous and Dynamic Imbibition
,”
J. Pet. Sci. Eng.
,
199
, p.
108327
.
41.
Sheng
,
J. J.
,
2017
, “
Critical Review of Field EOR Projects in Shale and Tight Reservoirs
,”
J. Pet. Sci. Eng.
,
159
, pp.
654
665
.
42.
Zhang
,
T.-T.
,
Li
,
Z.-P.
,
Adenutsi
,
C. D.
,
Wei
,
Y.-Z.
,
Ma
,
Z.-F.
, and
You
,
Q.
,
2022
, “
Quantitative Investigation of Nanofluid Imbibition in Tight Oil Reservoirs Based on NMR Technique
,”
Pet. Sci.
,
19
(
5
), pp.
2185
2198
.
43.
Gao
,
Z.
, and
Hu
,
Q.
,
2018
, “
Pore Structure and Spontaneous Imbibition Characteristics of Marine and Continental Shales in China
,”
AAPG Bull.
,
102
(
10
), pp.
1941
1961
.
44.
Ji
,
W.
,
Hao
,
F.
,
Schulz
,
H.-M.
,
Song
,
Y.
, and
Tian
,
J.
,
2019
, “
The Architecture of Organic Matter and Its Pores in Highly Mature gas Shales of the Lower Silurian Longmaxi Formation in the Upper Yangtze Platform, South China
,”
AAPG Bull.
,
103
(
12
), pp.
2909
2942
.
45.
Huang
,
H.
,
Sun
,
W.
,
Ji
,
W.
,
Zhang
,
R.
,
Du
,
K.
,
Zhang
,
S.
,
Ren
,
D.
,
Wang
,
Y.
,
Chen
,
L.
, and
Zhang
,
X.
,
2018
, “
Effects of Pore-Throat Structure on Gas Permeability in the Tight Sandstone Reservoirs of the Upper Triassic Yanchang Formation in the Western Ordos Basin, China
,”
J. Pet. Sci. Eng.
,
162
, pp.
602
616
.
46.
Yang
,
R.
,
Jia
,
A.
,
He
,
S.
,
Hu
,
Q.
,
Sun
,
M.
,
Dong
,
T.
,
Hou
,
Y.
, and
Zhou
,
S.
,
2021
, “
Experimental Investigation of Water Vapor Adsorption Isotherm on Gas-Producing Longmaxi Shale: Mathematical Modeling and Implication for Water Distribution in Shale Reservoirs
,”
Chem. Eng. J.
,
406
, p.
125982
.
47.
Luo
,
Q.
,
Zhong
,
N.
,
Dai
,
N.
, and
Zhang
,
W.
,
2016
, “
Graptolite-derived Organic Matter in the Wufeng–Longmaxi Formations (Upper Ordovician–Lower Silurian) of Southeastern Chongqing, China: Implications for Ggas Shale Evaluation
,”
Int. J. Coal Geol.
,
153
, pp.
87
98
.
48.
Handy
,
L. L.
,
1960
, “
Determination of Effective Capillary Pressures for Porous Media From Imbibition Data
,”
Trans. AIME
,
219
(
1
), pp.
75
80
.
49.
Philip
,
J. R.
,
1957
, “
The Theory of Infiltration: 4. Sorptivity and Algebraic Infiltration Equations
,”
Soil Sci.
,
84
(
3
), pp.
257
264
.
50.
Hu
,
Q.
,
Ewing
,
R. P.
, and
Dultz
,
S.
,
2012
, “
Low Pore Connectivity in Natural Rock
,”
J. Contam. Hydrol.
,
133
, pp.
76
83
.
You do not currently have access to this content.