Abstract

Combustion is the main parameter that affects efficiency and exhaust gas emissions. Recently, different studies have been carried out to increase the combustion rates due to the increasing use of the alternative fuels and lean mixtures in spark ignition engines. In general, in the absence of systems such as an optical access engine or ionization probes, combustion process evaluation is done based on cylinder pressure. In this study, the effect of different combustion chamber geometries on the turbulent burning speeds was investigated experimentally and theoretically. A three-zone, quasi-dimensional thermodynamic model for a spark ignition engine was constructed. Measured cylinder pressure data were used to establish the transition between the zones of the model and determine turbulent burning speeds. Two different turbulent speeds were calculated in the model, these are flame propagation and consumption speeds. It was seen that combustion chamber geometry significantly affected turbulent burning speeds. In MAN-Ricardo shapes and cylindrical shapes, the turbulent burning speeds decreased after it reached a maximum value in the combustion period. In flat geometry, without any bowl, speed continuously decreased different from other two designs. By means of a quasi-dimensional thermodynamic model, mean values of the turbulent burning and the flame propagation speeds can be calculated without having any optical observation.

References

1.
van Basshuysen
,
R.
, ed.,
2016
,
Natural Gas and Renewable Methane for Powertrains − Future Strategies for a Climate-Neutral Mobility
,
Springer
,
Berlin
.
2.
Pandey
,
J. K.
, and
Kumar
,
G. N.
,
2022
, “
Effect of Variable Compression Ratio and Equivalence Ratio on Performance, Combustion and Emission of Hydrogen Port Injection SI Engine
,”
Energy
,
239
(
Part E
), p.
122468
.
3.
Ran
,
Z.
,
Hariharan
,
D.
,
Lawler
,
B.
, and
Mamalis
,
S.
,
2019
, “
Experimental Study of Lean Spark Ignition Combustion Using Gasoline, Ethanol, Natural Gas, and Syngas
,”
Fuel
,
235
, pp.
530
537
.
4.
Poulos
,
S. G.
, and
Heywood
,
J. B.
,
1983
, “
The Effect of Chamber Geometry on Spark-Ignition Engine Combustion
,”
SAE Tech. Pap., 830334.
5.
Hasan
,
A. O.
,
Al-Rawashdeh
,
H.
,
Al-Muhtaseb
,
A. H.
,
Abu-jrai
,
A.
,
Ahmad
,
R.
, and
Zeaiter
,
J.
,
2018
, “
Impact of Changing Combustion Chamber Geometry on Emissions, and Combustion Characteristics of a Single Cylinder SI (Spark Ignition) Engine Fueled With Ethanol/Gasoline Blends
,”
Fuel
,
231
, pp.
197
203
.
6.
Johansson
,
B.
, and
Olsson
,
K.
,
1995
, “
Combustion Chambers for Natural Gas Si Engines Part I: Fluid Flow and Combustion
,”
SAE Technical Papers., 950469.
7.
Ravi
,
K.
, and
Porpatham
,
E.
,
2017
, “
Effect of Piston Geometry on Performance and Emission Characteristics of an LPG Fuelled Lean Burn SI Engine at Full Throttle Condition
,”
Appl. Therm. Eng.
,
110
, pp.
1051
1060
.
8.
Yan
,
B.
,
Tong
,
L.
,
Wang
,
H.
,
Zheng
,
Z.
,
Qin
,
Y.
, and
Yao
,
M.
,
2017
, “
Experimental and Numerical Investigation of the Effects of Combustion Chamber Reentrant Level on Combustion Characteristics and Thermal Efficiency of Stoichiometric Operation Natural Gas Engine With EGR
,”
Appl. Therm. Eng.
,
123
, pp.
1473
1483
.
9.
Stocchi
,
I.
,
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2019
, “
Effect of Piston Crevices on the Numerical Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol. Trans.
,
141
(
11
), p.
112204
.
10.
Mehdiyev
,
R.
, and
Wolanski
,
P.
,
2000
, “
Bi-Modal Combustion Chamber for a Stratified Charge Engine
,”
SAE Technical Papers
,
SAE International
, 2000-01-0196.
11.
Garg
,
M.
, and
Ravikrishna
,
R. V.
,
2019
, “
In-Cylinder Flow and Combustion Modeling of a CNG-Fuelled Stratified Charge Engine
,”
Appl. Therm. Eng.
,
149
, pp.
425
438
.
12.
Cihan
,
Ö
,
Doğan
,
H. E.
,
Kutlar
,
O. A.
,
Demirci
,
A.
, and
Javadzadehkalkhoran
,
M.
,
2020
, “
Evaluation of Heat Release and Combustion Analysis in Spark Ignition Wankel and Reciprocating Engine
,”
Fuel
,
261
, p.
116479
.
13.
Bradley
,
D.
,
Haq
,
M. Z.
,
Hicks
,
R. A.
,
Kitagawa
,
T.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
2003
, “
Turbulent Burning Velocity, Burned Gas Distribution, and Associated Flame Surface Definition
,”
Combust. Flame
,
133
(
4
), pp.
415
430
.
14.
Mancaruso
,
E.
,
Todino
,
M.
, and
Vaglieco
,
B. M.
,
2020
, “
Study on Dual Fuel Combustion in an Optical Research Engine by Infrared Diagnostics Varying Methane Quantity and Engine Speed
,”
Appl. Therm. Eng.
,
178
, p.
115623
.
15.
Liu
,
K.
,
Burluka
,
A. A.
, and
Sheppard
,
C. G. W.
,
2013
, “
Turbulent Flame and Mass Burning Rate in a Spark Ignition Engine
,”
Fuel
,
107
, pp.
202
208
.
16.
Rassweiler
,
G. M.
, and
Withrow
,
L.
,
1938
, “
Motion Pictures of Engine Flames Correlated With Pressure Cards
,”
SAE Technical Papers
,
SAE International
,
380139
.
17.
Lancaster
,
D. R.
,
Krieger
,
R. B.
,
Sorenson
,
S. C.
, and
Hull
,
W. L.
,
1976
, “
Effects of Turbulence on Spark-Ignition Engine Combustion
,”
SAE Prepr
(
Section 1
), pp.
689
710
.
18.
Lavole
,
G. A.
,
Heywood
,
J. B.
, and
Keck
,
J. C.
,
1970
, “
Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines
,”
Combust. Sci. Technol.
,
1
(
4
), pp.
313
326
.
19.
Beretta
,
G. P.
,
Rashidi
,
M.
, and
Keck
,
J. C.
,
1983
, “
Turbulent Flame Propagation and Combustion in Spark Ignition Engines
,”
Combust. Flame
,
52
, pp.
217
245
.
20.
Ratzke
,
A.
,
Schöffler
,
T.
,
Kuppa
,
K.
, and
Dinkelacker
,
F.
,
2015
, “
Validation of Turbulent Flame Speed Models for Methane-Air-Mixtures at High Pressure Gas Engine Conditions
,”
Combust. Flame
,
162
(
7
), pp.
2778
2787
.
21.
Smith
,
J. K.
,
Roberts
,
P.
,
Kountouriotis
,
A.
,
Richardson
,
D.
,
Aleiferis
,
P.
, and
Ruprecht
,
D.
,
2020
, “
Thermodynamic Modelling of a Stratified Charge Spark Ignition Engine
,”
Int. J. Engine Res.
,
21
(
5
), pp.
801
810
.
22.
Kutlar
,
O. A.
, and
Cihan
,
Ö
,
2022
, “
Investigation of Parameters Affecting Rotary Engine by Means of a One Zone Thermodynamic Model
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042304
.
23.
Pyszczek
,
R.
,
Hahn
,
J.
,
Priesching
,
P.
, and
Teodorczyk
,
A.
,
2020
, “
Numerical Modeling of Spark Ignition in Internal Combustion Engines
,”
ASME J. Energy Resour. Technol. Trans.
,
142
(
2
), p.
022202
.
24.
Gillespie
,
L.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
2000
, “
Aspects of Laminar and Turbulent Burning Velocity Relevant to SI Engines
,”
SAE Technical Papers
,
SAE International.
, 2000-01-0192.
25.
Conte
,
E.
, and
Boulouchos
,
K.
,
2006
, “
Experimental Investigation into the Effect of Reformer Gas Addition on Flame Speed and Flame Front Propagation in Premixed, Homogeneous Charge Gasoline Engines
,”
Combust. Flame
,
146
(
1–2
), pp.
329
347
.
26.
Hacohen
,
J.
,
Belmont
,
M. R.
, and
Ashcroft
,
S. J.
,
1994
, “
Flame Speeds in a Spark Ignition Engine
,”
SAE Tech. Pap.
,
942050
.
27.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane-Air and Iso-Octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
(
1–2
), pp.
126
144
.
28.
Kutlar
,
O. A.
,
1999
, “
A New Method to Decrease the Fuel Consumption at Part Load Conditions of Four Stroke Ottocycle (Rochas) Engine (Skipperiod Engine)
,”
Ph.D. thesis
,
İstanbul Technical University
.
29.
Tekeli
,
Ö
,
2013
, “
Designing and Production Ignition and Injection Units of a Gasoline Engine With Skip Cycle
,”
MS. thesis
,
İstanbul Technical University
.
30.
Demirci
,
A.
,
2017
, “
The Effects of Different Combustion Chamber Geometries on the Performance and Emissions of an Internal Combustion Engine
,”
Ph.D. thesis
,
İstanbul Technical University
,
Istanbul, Turkey
.
31.
Doğan
,
H. E.
,
2019
, “
Investigation of Different Combustion Chamber Geometries With Natural Gas and Gasoline Fuel
,”
Ph.D. thesis
,
İstanbul Technical University
.
32.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York, USA
.
33.
Brequigny
,
P.
,
Mounaïm-Rousselle
,
C.
,
Halter
,
F.
,
Moreau
,
B.
, and
Dubois
,
T.
,
2013
, “
Impact of Fuel Properties and Flame Stretch on the Turbulent Flame Speed in Spark-Ignition Engines
,”
SAE Tech. Pap., 6.
34.
Ihracska
,
B.
,
Korakianitis
,
T.
,
Ruiz
,
P.
,
Emberson
,
D. R.
,
Crookes
,
R. J.
,
Diez
,
A.
, and
Wen
,
D.
,
2014
, “
Assessment of Elliptic Flame Front Propagation Characteristics of Iso-Octane, Gasoline, M85 and E85 in an Optical Engine
,”
Combust. Flame
,
161
(
3
), pp.
696
710
.
35.
Giménez
,
B.
,
Melgar
,
A.
,
Horrillo
,
A.
, and
Tinaut
,
F. V.
,
2021
, “
A Correlation for Turbulent Combustion Speed Accounting for Instabilities and Expansion Speed in a Hydrogen-Natural Gas Spark Ignition Engine
,”
Combust. Flame
,
223
, pp.
15
27
.
36.
Conte
,
E.
, and
Boulouchos
,
K.
,
2005
, “
A Quasi-Dimensional Model for Estimating the Influence of Hydrogen-Rich Gas Addition on Turbulent Flame Speed and Flame Front Propagation in IC-SI Engines
,”
SAE Tech. Pap.
, 2005-01-0232.
37.
Brequigny
,
P.
,
Halter
,
F.
,
Mounaïm-Rousselle
,
C.
, and
Dubois
,
T.
,
2016
, “
Fuel Performances in Spark-Ignition (SI) Engines: Impact of Flame Stretch
,”
Combust. Flame
,
166
, pp.
98
112
.
38.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
Flame Development Analysis in a Diesel Optical Engine Converted to Spark Ignition Natural Gas Operation
,”
Appl. Energy
,
230
, pp.
1205
1217
.
39.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Methodology to Separate the Two Burn Stages of Natural-Gas Lean Premixed-Combustion Inside a Diesel Geometry
,”
Energy Convers. Manag.
,
195
, pp.
21
31
.
40.
Arcoumanis
,
C.
, ed.,
2009
,
Flow and Combustion in Reciprocating Engines
,
Springer
,
Berlin, Germany
.
41.
Zamashchikov
,
V. V.
,
2022
, “
Method for Determining the Flame Velocity From the Dependence of Pressure on Time at Beginning of the Process
,”
Combust. Sci. Technol.
, pp.
1
8
.
42.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Combustion Partitioning Inside a Natural Gas Spark Ignition Engine with a Bowl-in-Piston Geometry
,”
Energy Convers. Manag.
,
183
, pp.
73
83
.
43.
Demesoukas
,
S.
,
Brequigny
,
P.
,
Caillol
,
C.
,
Halter
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2016
, “
0D Modeling Aspects of Flame Stretch in Spark Ignition Engines and Comparison with Experimental Results
,”
Appl. Energy
,
179
, pp.
401
412
.
44.
Kolla
,
H.
,
Rogerson
,
J. W.
, and
Swaminathan
,
N.
,
2010
, “
Validation of a Turbulent Flame Speed Model Across Combustion Regimes
,”
Combust. Sci. Technol.
,
182
(
3
), pp.
284
308
.
45.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2002
, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
1
74
.
46.
Driscoll
,
J. F.
,
2008
, “
Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
91
134
.
47.
Bradley
,
D.
,
1992
, “
How Fast Can We Burn?
,”
Symp. Combust.
,
24
(
1
), pp.
247
262
.
48.
Shepherd
,
I. G.
, and
Cheng
,
R. K.
,
2001
, “
The Burning Rate of Premixed Flames in Moderate and Intense Turbulence
,”
Combust. Flame
,
127
(
3
), pp.
2066
2075
.
49.
Burke
,
E. M.
,
Güthe
,
F.
, and
Monaghan
,
R. F. D.
,
2016
, “
A Comparison of Turbulent Flame Speed Correlations for Hydrocarbon Fuels at Elevated Pressures
,”
Proceedings of ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
.
50.
Amirante
,
R.
,
Distaso
,
E.
,
Tamburrano
,
P.
, and
Reitz
,
R. D.
,
2017
, “
Laminar Flame Speed Correlations for Methane, Ethane, Propane and Their Mixtures, and Natural Gas and Gasoline for Spark-Ignition Engine Simulations
,”
Int. J. Engine Res.
,
18
(
9
), pp.
951
970
.
51.
Jerzembeck
,
S.
,
Peters
,
N.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation
,”
Combust. Flame
,
156
(
2
), pp.
292
301
.
52.
Sileghem
,
L.
,
Alekseev
,
V. A.
,
Vancoillie
,
J.
,
Van Geem
,
K. M.
,
Nilsson
,
E. J. K.
,
Verhelst
,
S.
, and
Konnov
,
A. A.
,
2013
, “
Laminar Burning Velocity of Gasoline and the Gasoline Surrogate Components Iso-Octane, n-Heptane and Toluene
,”
Fuel
,
112
, pp.
355
365
.
53.
Kobayashi
,
H.
,
2002
, “
Experimental Study of High-Pressure Turbulent Premixed Flames
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
375
387
.
You do not currently have access to this content.