Abstract

A tower-type moving bed can be used as the air reactor in a chemical looping combustion system because of its low-pressure drop and smooth operation. In our previous simulation, a quasi-two-dimensional numerical model was established using discrete element method (DEM) approach to investigate the velocity and solid residence time distributions in the moving bed. In this work, the flow patterns under different operating and structural parameters are studied and optimized via machine learning methods. The random Forest regression model is applied to evaluate the importance of each variable to the solid flow pattern, while the feed forward neural network is applied to buildup a high-accuracy model to predict the solid axial velocity in the moving bed without the requirement to understand the physical mechanisms. Results show that the solid mass flux has the least impact on the mass flow index, while the axial position has the dominant influence and what comes next is the wedge angle, reactor angle, and ratio of down-comer diameter to reactor diameter. Further, based on the established feed forward neural network model, relation between the effective transition position and structural parameters of the moving bed is built, which provides valuable guidance for optimization of the reactor configuration.

References

1.
Adanez
,
J.
,
Abad
,
A.
,
Garcia-Labiano
,
F.
,
Gayan
,
P.
, and
Luis
,
F.
,
2012
, “
Progress in Chemical-Looping Combustion and Reforming Technologies
,”
Prog. Energy Combust. Sci.
,
38
(
2
), pp.
215
282
.
2.
Thon
,
A.
,
Kramp
,
M.
,
Hartge
,
E. U.
,
Heinrich
,
S.
, and
Werther
,
J.
,
2014
, “
Operational Experience With a System of Coupled Fluidized Beds for Chemical Looping Combustion of Solid Fuels Using Ilmenite as Oxygen Carrier
,”
Appl. Energy
,
118
, pp.
309
317
.
3.
Abad
,
A.
,
Pérez-Vega
,
R.
,
de Diego
,
L. F.
,
García-Labiano
,
F.
,
Gayán
,
P.
, and
Adánez
,
J.
,
2015
, “
Design and Operation of a 50 KWTh Chemical Looping Combustion (CLC) Unit for Solid Fuels
,”
Appl. Energy
,
157
, pp.
295
303
.
4.
Kim
,
H. R.
,
Wang
,
D.
,
Zeng
,
L.
,
Bayham
,
S.
,
Tong
,
A.
,
Chung
,
E.
,
Kathe
,
M. V.
,
Luo
,
S.
,
McGiveron
,
O.
,
Wang
,
A.
,
Sun
,
Z.
,
Chen
,
D.
, and
Fan
,
L.
,
2013
, “
Coal Direct Chemical Looping Combustion Process: Design and Operation of a 25-KWTh Sub-Pilot Unit
,”
Fuel
,
108
, pp.
370
384
.
5.
Bayham
,
S. C.
,
Kim
,
H. R.
,
Wang
,
D.
,
Tong
,
A.
,
Zeng
,
L.
,
McGiveron
,
O.
,
Kathe
,
M. V.
,
Chung
,
E.
,
Wang
,
W.
,
Wang
,
A.
,
Majumder
,
A.
, and
Fan
,
L.
,
2013
, “
Iron-Based Coal Direct Chemical Looping Combustion Process: 200-h Continuous Operation of a 25-KWTh Subpilot Unit
,”
Energy Fuels
,
27
(
3
), pp.
1347
1356
.
6.
Shao
,
Y.
,
Agarwal
,
R. K.
,
Wang
,
X.
, and
Jin
,
B.
,
2020
, “
Numerical Simulation of a 3D Full Loop IG-CLC System Including a Two-Stage Counter-Flow Moving Bed Air Reactor
,”
Chem. Eng. Sci.
,
217
, p.
115502
.
7.
Shao
,
Y.
,
Wang
,
X.
, and
Jin
,
B.
,
2022
, “
Numerical Investigation of Hydrodynamics and Cluster Characteristics in a Chemical Looping Combustion System
,”
Energy
,
244
, p.
123053
.
8.
Wang
,
X.
,
Wang
,
X.
,
Kong
,
Z.
,
Shao
,
Y.
, and
Jin
,
B.
,
2020
, “
Auto-Thermal Operation and Optimization of Coal-Fueled Separated Gasification Chemical Looping Combustion in a Pilot-Scale Unit
,”
Chem. Eng. J.
,
383
, p.
123159
.
9.
Shao
,
Y.
,
Zhang
,
Y.
,
Wang
,
X.
,
Wang
,
X.
,
Jin
,
B.
, and
Liu
,
H.
,
2017
, “
Three-Dimensional Full Loop Modeling and Optimization of an In Situ Gasification Chemical Looping Combustion System
,”
Energy Fuels
,
31
(
12
), pp.
13859
13870
.
10.
Shao
,
Y.
,
Wang
,
X.
,
Jin
,
B.
,
Kong
,
Z.
,
Wang
,
X.
, and
Zhang
,
Y.
,
2019
, “
Gas–Solid Hydrodynamics of an IG-CLC System With a Two-Stage Counter-Flow Moving Bed Air Reactor
,”
Chem. Eng. Res. Des.
,
143
, pp.
100
113
.
11.
Shahabuddin
,
M.
,
Kibria
,
M. A.
, and
Bhattacharya
,
S.
,
2020
, “
Effect of Pore Diffusion on the Gasification Characteristics of Coal Char Under CO2 Atmosphere
,”
Int. J. Energy Clean Environ.
,
21
(
4
), pp.
85
102
.
12.
Ferreira
,
T.
,
Paiva
,
J.
, and
Pinho
,
C.
,
2020
, “
Comparative Analysis of Fluidized and Fixed Bed to Obtain Data on the Char Pellets Combustion Regime
,”
Int. J. Energy Clean Environ.
,
21
(
3
), pp.
237
268
.
13.
Jarray
,
A.
,
Magnanimo
,
V.
, and
Luding
,
S.
,
2019
, “
Wet Granular Flow Control Through Liquid Induced Cohesion
,”
Powder Technol.
,
341
, pp.
126
139
.
14.
Huang
,
X.
,
Zheng
,
Q.
,
Liu
,
D.
,
Yu
,
A.
, and
Yan
,
W.
,
2022
, “
A Design Method of Hopper Shape Optimization With Improved Mass Flow Pattern and Reduced Particle Segregation
,”
Chem. Eng. Sci.
,
253
, p.
117579
.
15.
Balevičius
,
R.
,
Kačianauskas
,
R.
,
Mróz
,
Z.
, and
Sielamowicz
,
I.
,
2011
, “
Analysis and DEM Simulation of Granular Material Flow Patterns in Hopper Models of Different Shapes
,”
Adv. Powder Technol.
,
22
(
2
), pp.
226
235
.
16.
Zhang
,
Y.
,
Jia
,
F.
,
Zeng
,
Y.
,
Han
,
Y.
, and
Xiao
,
Y.
,
2018
, “
DEM Study in the Critical Height of Flow Mechanism Transition in a Conical Silo
,”
Powder Technol.
,
331
, pp.
98
106
.
17.
Liu
,
H.
,
Jia
,
F.
,
Xiao
,
Y.
,
Han
,
Y.
,
Li
,
G.
,
Li
,
A.
, and
Bai
,
S.
,
2019
, “
Numerical Analysis of the Effect of the Contraction Rate of the Curved Hopper on Flow Characteristics of the Silo Discharge
,”
Powder Technol.
,
356
, pp.
858
870
.
18.
Shao
,
Y.
,
Agarwal
,
R. K.
,
Li
,
J.
,
Wang
,
X.
, and
Jin
,
B.
,
2020
, “
Computational Fluid Dynamics-Discrete Element Model Simulation of Flow Characteristics and Solids’ Residence Time Distribution in a Moving Bed Air Reactor for Chemical Looping Combustion
,”
Ind. Eng. Chem. Res.
,
59
(
40
), pp.
18180
18192
.
19.
Yarveicy
,
H.
,
Moghaddam
,
A. K.
, and
Ghiasi
,
M. M.
,
2014
, “
Practical Use of Statistical Learning Theory for Modeling Freezing Point Depression of Electrolyte Solutions: LSSVM Model
,”
J. Nat. Gas Sci. Eng.
,
20
, pp.
414
421
.
20.
Yarveicy
,
H.
, and
Ghiasi
,
M. M.
,
2017
, “
Modeling of Gas Hydrate Phase Equilibria: Extremely Randomized Trees and LSSVM Approaches
,”
J. Mol. Liq.
,
243
, pp.
533
541
.
21.
Pandey
,
R. K.
,
Kumar
,
A.
,
Mandal
,
A.
, and
Vaferi
,
B.
,
2022
, “
Employing Deep Learning Neural Networks for Characterizing Dual-Porosity Reservoirs Based on Pressure Transient Tests
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
113002
.
22.
Chuttar
,
A.
,
Thyagarajan
,
A.
, and
Banerjee
,
D.
,
2022
, “
Leveraging Machine Learning (Artificial Neural Networks) for Enhancing Performance and Reliability of Thermal Energy Storage Platforms Utilizing Phase Change Materials
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022001
.
23.
Suleymanov
,
V.
,
Gamal
,
H.
,
Elkatatny
,
S.
,
Glatz
,
G.
, and
Abdulraheem
,
A.
,
2022
, “
Machine Learning Models for Acoustic Data Prediction During Drilling Composite Lithology Formations
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
103201
.
24.
Chen
,
Y.
,
Liu
,
C.
,
Guo
,
G.
,
Zhao
,
Y.
,
Qian
,
C.
,
Jiang
,
H.
,
Shen
,
B.
,
Wu
,
D.
,
Cao
,
F.
, and
Sun
,
H.
,
2022
, “
Machine-Learning-Guided Reaction Kinetics Prediction Towards Solvent Identification for Chemical Absorption of Carbonyl Sulfide
,”
Chem. Eng. J.
,
444
, p.
136662
.
25.
Serrano
,
D.
, and
Castelló
,
D.
,
2020
, “
Tar Prediction in Bubbling Fluidized Bed Gasification Through Artificial Neural Networks
,”
Chem. Eng. J.
,
402
, p.
126229
.
26.
Chew
,
J. W.
, and
Cocco
,
R. A.
,
2020
, “
Application of Machine Learning Methods to Understand and Predict Circulating Fluidized Bed Riser Flow Characteristics
,”
Chem. Eng. Sci.
,
217
, p.
115503
.
27.
Patel
,
A. M.
,
Cocco
,
R. A.
, and
Chew
,
J. W.
,
2021
, “
Key Influence of Clusters of Geldart Group B Particles in a Circulating Fluidized Bed Riser
,”
Chem. Eng. J.
,
413
, p.
127386
.
28.
Chew
,
J. W.
, and
Cocco
,
R. A.
,
2020
, “
Do Particle-Related Parameters Influence Circulating Fluidized Bed (CFB) Riser Flux and Elutriation?
,”
Chem. Eng. Sci.
,
227
, p.
115935
.
29.
Li
,
Y.
,
Chang
,
J.
,
Kong
,
C.
, and
Bao
,
W.
,
2022
, “
Recent Progress of Machine Learning in Flow Modeling and Active Flow Control
,”
Chinese J. Aeronaut.
,
35
(
4
), pp.
14
44
.
30.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
Random Forest Machine Learning Model for Predicting Combustion Feedback Information of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012301
.
31.
Pandey
,
S. N.
, and
Singh
,
M.
,
2021
, “
Artificial Neural Network to Predict the Thermal Drawdown of Enhanced Geothermal System
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
010901
.
32.
Yarveicy
,
H.
,
Saghafi
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2019
, “
Decision Tree-Based Modeling of CO2 Equilibrium Absorption in Different Aqueous Solutions of Absorbents
,”
Environ. Prog. Sustain. Energy
,
38
(
s1
), pp.
S441
S448
.
33.
Korteby
,
Y.
,
Kristó
,
K.
,
Sovány
,
T.
, and
Regdon
,
G.
,
2018
, “
Use of Machine Learning Tool to Elucidate and Characterize the Growth Mechanism of an In-Situ Fluid Bed Melt Granulation
,”
Powder Technol.
,
331
, pp.
286
295
.
34.
Fu
,
Y.
,
Wang
,
S.
,
Xu
,
X.
,
Zhao
,
Y.
,
Dong
,
L.
, and
Chen
,
Z.
,
2022
, “
Particle Flow Characteristics in a Gas-Solid Separation Fluidized Bed Based on Machine Learning
,”
Fuel
,
314
, p.
123039
.
35.
Guo
,
Q.
,
Ye
,
M.
,
Yang
,
W. Q.
, and
Liu
,
Z. M.
,
2019
, “
A Machine Learning Approach for Electrical Capacitance Tomography Measurement of Gas-Solid Fluidized Beds
,”
AICHE J.
,
65
(
6
).
36.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
37.
Bai
,
Y.
, and
Jin
,
Z.
,
2005
, “
Prediction of SARS Epidemic by BP Neural Networks With Online Prediction Strategy
,”
Chaos, Solitons Fractals
,
26
(
2
), pp.
559
569
.
38.
Nguyen
,
T. V.
,
Brennen
,
C. E.
, and
Sabersky
,
R. H.
,
1980
, “
Funnel Flow in Hoppers
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
729
735
.
39.
Johanson
,
J. R.
, and
Jenike
,
A. W.
,
1962
,
Bulletin 116: Stress and Velocity Fields in the Gravity Flow of Bulk Solids
,
Utah Engineering Experiment Station
,
Salt Lake City, UT
.
40.
Zhong
,
Z.
,
Ooi
,
J. Y.
, and
Rotter
,
J. M.
,
2001
, “
The Sensitivity of Silo Flow and Wall Stresses to Filling Method
,”
Eng. Struct.
,
23
(
7
), pp.
756
767
.
You do not currently have access to this content.