Abstract

Dimethyl ether appears to be a better choice among various diesel alternatives due to its high cetane number and sootless combustion. However, the physical and chemical properties of dimethyl ether are very different from those of diesel. The physical properties influence spray formation and atomization characteristics, while chemical properties determine combustion and emission formation characteristics. Thus, fuel's physical and chemical properties significantly determine engine performance and emissions. In the present work, spray combustion and emission formation characteristics of n-heptane, dimethyl ether, and their blends (10, 25, and 50% dimethyl ether in n-heptane) were numerically studied in a constant volume chamber. Results show that the n-heptane spray combustion has the highest heat release rate with an intense premix combustion phase, whereas dimethyl ether spray combustion has the lowest heat release rate and shortest premix combustion phase. The magnitude of the premixed phase and heat release rate decreases with the increase in dimethyl ether mass fraction in the blends. Soot, carbon monoxide (CO), unburned hydrocarbon (UHC), and nitric oxide (NO) emissions decreased with the increase in the dimethyl ether mass fraction in the blends and were lowest for the dimethyl ether.

References

1.
Iriti
,
M.
,
Piscitelli
,
P.
,
Missoni
,
E.
, and
Miani
,
A.
,
2020
, “
Air Pollution and Health: The Need for a Medical Reading of Environmental Monitoring Data
,”
Int. J. Environ. Health Res.
,
17
(
7
), p.
2174
.
2.
Ge
,
S.
,
Pugazhendhi
,
A.
,
Sekar
,
M.
,
Xia
,
C.
,
Elfasakhany
,
A.
,
Brindhadevi
,
K.
, and
Whangchai
,
K.
,
2022b
, “
PM Emissions—Assessment of Combustion Energy Transfer With Schizochytrium sp. Algal Biodiesel and Blends in IC Engine
,”
Sci. Total Environ.
,
802
, p.
149750
.
3.
Ge
,
S.
,
Manigandan
,
S.
,
Mathimani
,
T.
,
Basha
,
S.
,
Xia
,
C.
,
Brindhadevi
,
K.
,
Unpaprom
,
Y.
,
Whangchai
,
K.
, and
Pugazhendhi
,
A.
,
2022a
, “
An Assessment of Agricultural Waste Cellulosic Biofuel for Improved Combustion and Emission Characteristics
,”
Sci. Total Environ.
,
813
, p.
152418
.
4.
Kalil Rahiman
,
M.
,
Santhoshkumar
,
S.
,
Subramaniam
,
D.
,
Avinash
,
A.
, and
Pugazhendhi
,
A.
,
2022
, “
Effects of Oxygenated Fuel Pertaining to Fuel Analysis on Diesel Engine Combustion and Emission Characteristics
,”
Energy
,
239
(
Part D)
, p.
122373
.
5.
Teng
,
H.
,
Mccandless
,
J. C.
, and
Schneyer
,
J. B.
,
2001
, “
Thermochemical Characteristics of Dimethyl Ether—An Alternative Fuel for Compression-Ignition Engines
,”
SAE Technical Papers
, Paper No. 2001-01-0154.
6.
Teng
,
H.
,
McCandless
,
J. C.
, and
Schneyer
,
J. B.
,
2004
, “
Thermodynamic Properties of Dimethyl Ether—An Alternative Fuel for Compression-Ignition Engines
,”
SAE Technical Papers
, Paper No. 2004-01-0093.
7.
Arcoumanis
,
C.
,
Bae
,
C.
,
Crookes
,
R.
, and
Kinoshita
,
E.
,
2008
, “
The Potential of Di-Methyl Ether (DME) as an Alternative Fuel for Compression-Ignition Engines: A Review
,”
Fuel
,
87
(
7
), pp.
1014
1030
.
8.
Park
,
S. H.
, and
Lee
,
C. S.
,
2014
, “
Applicability of Dimethyl Ether (DME) in a Compression Ignition Engine as an Alternative Fuel
,”
Energy Convers. Manage.
,
86
, pp.
848
863
.
9.
Kim
,
M. Y.
,
Bang
,
S. H.
, and
Lee
,
C. S.
,
2007
, “
Experimental Investigation of Spray and Combustion Characteristics of Dimethyl Ether in a Common-Rail Diesel Engine
,”
Energy Fuels
,
21
(
2
), pp.
793
800
.
10.
Kim
,
M. Y.
,
Yoon
,
S. H.
,
Ryu
,
B. W.
, and
Lee
,
C. S.
,
2008
, “
Combustion and Emission Characteristics of DME as an Alternative Fuel for Compression Ignition Engines With a High Pressure Injection System
,”
Fuel
,
87
(
12
), pp.
2779
2786
.
11.
Youn
,
I. M.
,
Park
,
S. H.
,
Roh
,
H. G.
, and
Lee
,
C. S.
,
2011
, “
Investigation on the Fuel Spray and Emission Reduction Characteristics for Dimethyl Ether (DME) Fueled Multi-cylinder Diesel Engine With Common-Rail Injection System
,”
Fuel Process. Technol.
,
92
(
7
), pp.
1280
1287
.
12.
Zubel
,
M.
,
Lehrheuer
,
B.
, and
Pischinger
,
S.
,
2021
, “
Impact of Increased Injector Nozzle Hole Diameters on Engine Performance, Exhaust Particle Distribution and Methane and Formaldehyde Emissions During Dimethyl Ether Operation
,”
Int. J. Engine Res.
,
22
(
2
), pp.
503
515
.
13.
Mukherjee
,
N. K.
,
Valera
,
H.
,
Unnithan
,
S.
,
Kumar
,
V.
,
Dhyani
,
V.
,
Mehra
,
S.
,
Tripathi
,
A.
,
Nene
,
D.
, and
Agarwal
,
A. K.
,
2022
, “
Feasibility Study of Novel DME Fuel Injection Equipment: Part 1- Fuel Injection Strategies and Spray Characteristics
,”
Fuel
,
323
, p.
124333
.
14.
Sahu
,
B.
, and
Srivastava
,
D. K.
,
2022
, “
A Numerical Investigation of Injector Hole Configuration and Injection Parameters in a Dimethyl Ether Fueled DICI Engine
,”
Environ. Prog. Sustainable Energy.
15.
Konno
,
M.
,
Chiba
,
K.
, and
Okamoto
,
T.
,
2010
, “
Experimental and Numerical Analysis of High Pressure DME Spray
,”
SAE Technical Papers
, Paper No. 2010-01-0880.
16.
No
,
S.-Y.
,
Hwang
,
J.-S.
,
Kim
,
S.-C.
, and
Ha
,
J.-S.
,
2003
, “
Spray Characteristics of Dimethyl Ether for Diesel Engine Application
,”
SAE Technical Paper
, Paper No. 2003-01-1926.
17.
Suh
,
H. K.
, and
Lee
,
C. S.
,
2008
, “
Experimental and Analytical Study on the Spray Characteristics of Dimethyl Ether (DME) and Diesel Fuels Within a Common-Rail Injection System in a Diesel Engine
,”
Fuel
,
87
(
6
), pp.
925
932
.
18.
Lim
,
O. T.
, and
Iida
,
N.
,
2015
, “
A Study on the Spray and Engine Combustion Characteristics of Diesel–Dimethyl Ether Fuel Blends
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
229
(
6
), pp.
782
792
.
19.
Park
,
S. H.
,
Kim
,
H. J.
, and
Lee
,
C. S.
,
2010
, “
Macroscopic Spray Characteristics and Breakup Performance of Dimethyl Ether (DME) Fuel at High Fuel Temperatures and Ambient Conditions
,”
Fuel
,
89
(
10
), pp.
3001
3011
.
20.
Kaario
,
O. T.
,
Vuorinen
,
V.
,
Kahila
,
H.
,
Im
,
H. G.
, and
Larmi
,
M.
,
2020
, “
The Effect of Fuel on High Velocity Evaporating Fuel Sprays: Large-Eddy Simulation of Spray A With Various Fuels
,”
Int. J. Engine Res.
,
21
(
1
), pp.
26
42
.
21.
Mitsugi
,
Y.
,
Wakabayashi
,
D.
,
Tanaka
,
K.
, and
Konno
,
M.
,
2015
, “
High-Speed Observation and Modeling of Dimethyl Ether Spray Combustion at Engine-Like Conditions
,”
SAE Int. J. Engines
,
9
(
1
), pp.
210
221
.
22.
ANSYS, Inc.
,
2021
,
ANSYS Model Fuel Library
.
23.
ANSYS, Inc.
,
2021
,
ANSYS Chemkin-Pro Theory Manual
.
24.
ANSYS, Inc.
,
2021
,
ANSYS Chemkin-Pro Reaction Workbench User's Manual
.
25.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
26.
Pepiot
,
P.
, and
Pitsch
,
H.
,
2005
, “
Systematic Reduction of Large Chemical Kinetic Mechanisms
,”
Proceedings of the 4th Joint Meeting of the U.S. Sections of the Combustion Institute
,
Philadelphia, PA
. https://web.stanford.edu/group/pitsch/publication/PepiotJMUSSCI2005.pdf
27.
ANSYS, Inc.
,
2021
,
ANSYS Forte Theory Manual
.
29.
Idicheria
,
C. A.
, and
Pickett
,
L. M.
,
2005
, “
Soot Formation in Diesel Combustion Under High-EGR Conditions
,”
SAE Transactions
, pp.
1559
1574
, Paper No. 2005-01-3834.
30.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,”
SAE Technical Papers
, Paper No. 980131.
31.
Reitz
,
R. D.
, and
Beale
,
J. C.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
At. Sprays
,
9
(
6
), pp.
623
650
.
32.
Park
,
S. H.
,
Kim
,
H. J.
, and
Lee
,
C. S.
,
2011
, “
Study on the Dimethyl Ether Spray Characteristics According to the Diesel Blending Ratio and the Variations in the Ambient Pressure, Energizing Duration, and Fuel Temperature
,”
Energy Fuels
,
25
(
4
), pp.
1772
1780
.
33.
Kim
,
H. J.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2009
, “
A Study on an Application of a Hybrid Break-up Model for Dimethyl Ether Atomization in a Common-Rail Injection System
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
223
(
10
), pp.
1351
1359
.
34.
Park
,
S. H.
,
Kim
,
H. J.
, and
Lee
,
C. S.
,
2010b
, “
Effects of Dimethyl-Ether (DME) Spray Behavior in the Cylinder on the Combustion and Exhaust Emissions Characteristics of a High Speed Diesel Engine
,”
Fuel Process. Technol.
,
91
(
5
), pp.
504
513
.
35.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-ɛ Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
36.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.
37.
Vishwanathan
,
G.
, and
Reitz
,
R. D.
,
2008
, “
Numerical Predictions of Diesel Flame Lift-off Length and Soot Distributions Under Low Temperature Combustion Conditions
,”
SAE Technical Paper
, Paper No. 2008-01-1331.
38.
Kong
,
S. C.
,
Sun
,
Y.
, and
Rietz
,
R. D.
,
2007
, “
Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry With Phenomenological Soot Model
,”
J. Eng. Gas Turbines Power
,
129
(
1
), pp.
245
251
.
39.
Park
,
S. W.
,
2009
, “
Numerical Study on Optimal Operating Conditions of Homogeneous Charge Compression Ignition Engines Fueled With Dimethyl Ether and n-Heptane
,”
Energy Fuels
,
23
(
8
), pp.
3909
3918
.
40.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines
,”
SAE Technical Papers
, Paper No.760129.
41.
Nagle
,
J.
, and
Strickland-Constable
,
R. F.
,
1962
, “
Oxidation of Carbon Between 1000–2000 °C
,”
Proceedings of the Fifth Conference on Carbon
,
348
(
1958
), pp.
154
164
.
42.
Ciezki
,
H. K.
, and
Adomeit
,
G.
,
1993
, “
Shock-tube Investigation of Self-ignition of n-heptane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(
4
), pp.
421
433
.
43.
Pfahl
,
U.
,
Fieweger
,
K.
, and
Adomeit
,
G.
,
1996
, “
Self-ignition of Diesel-Relevant Hydrocarbon-Air Mixtures Under Engine Conditions
,”
Symp. Int. Combust.
,
26
(
1
), pp.
781
789
.
44.
Fleisch
,
T. H.
,
Basu
,
A.
,
Gradassi
,
M. J.
, and
Masin
,
J. G.
,
1997
, “
Dimethyl Ether: A Fuel for the 21st Century
,”
Surf. Sci.
,
107
, pp.
117
125
.
45.
Kapus
,
P.
, and
Ofner
,
H.
,
1995
, “
Development of Fuel Injection Equipment and Combustion System for DI Diesels Operated on Dimethyl Ether
,”
SAE Technical Papers
, Paper No. 950062.
You do not currently have access to this content.