Abstract

The goal of the PITSTOP (Immersive platform for structured operator training) project is to overcome the limits of traditional workplace training on dangerous systems and reduce the related risks, using an innovative integration of engineering simulation models and virtual reality (VR) tools. This article specifically presents the first VR platform for training on small-scale industrial steam generators, representative of a vast class of hazardous industrial equipment. The dynamic model of the steam generator was developed in matlab-simulink using a mixed physics-based and data-driven approach. The generator model includes the main engineering components, actuators and measuring equipment, as well as control logic and emergency procedures. It can simulate normal operations and emergency situations. The model was calibrated using experimental data collected from the real system at various operating conditions to align simulated performance with the real behavior. The VR environment was developed in Unity, a graphics engine widely adopted by the videogame industry, using three-dimensional computer-aided design models of the steam generator and its surroundings. The user can access this immersive system wearing an HTC Vive headset. Unlike most existing training systems, learners can interact with the actuators using bare hands gestures, without controllers, making the experience intuitive and easily accessible. By connecting the dynamic model with the VR environment, the user's interactions are directly provided to the steam generator model, which in turn directly outputs the steam generator response to the VR environment, providing audio and visual feedback to the user, as if they were actually acting on the real generator. The results from this study could boost the further development of training platforms to safely train operators and certify their competence.

References

1.
Nazir
,
S.
, and
Manca
,
D.
,
2015
, “
How a Plant Simulator Can Improve Industrial Safety
,”
Process Saf. Prog.
,
34
(
3
), pp.
237
243
.
2.
Koelle
,
P. S.
,
1982
, “
Missed Opportunities—Strategy and Procedures for Testing Alarm and Shutdown Devices
,”
ASME J. Energy Resour. Technol.
,
104
(
2
), pp.
186
190
.
3.
Bergamo
,
P. A. D. S.
,
Streng
,
E. S.
,
de Carvalho
,
M. A.
,
Rosenkranz
,
J.
, and
Ghorbani
,
Y.
,
2022
, “
Simulation-Based Training and Learning: A Review on Technology-Enhanced Education for the Minerals Industry
,”
Miner. Eng.
,
175
.
4.
Patle
,
D. S.
,
Manca
,
D.
,
Nazir
,
S.
, and
Sharma
,
S.
,
2019
, “
Operator Training Simulators in Virtual Reality Environment for Process Operators: A Review
,”
Virtual Real.
,
23
(
3
), pp.
293
311
.
5.
Garcia Fracaro
,
S.
,
Glassey
,
J.
,
Bernaerts
,
K.
, and
Wilk
,
M.
,
2022
, “
Immersive Technologies for the Training of Operators in the Process Industry: A Systematic Literature Review
,”
Comput. Chem. Eng.
,
160
.
6.
Wadhwani
,
P.
, and
Gankar
,
S.
,
2018
, Operator Training Simulator Market Forecast 2025 | Industry Size Report.
7.
Landman
,
A.
,
van Oorschot
,
P.
,
René van Paassen
,
M. M.
,
Groen
,
E. L.
,
Bronkhorst
,
A. W.
, and
Mulder
,
M.
,
2018
, “
Training Pilots for Unexpected Events: A Simulator Study on the Advantage of Unpredictable and Variable Scenarios
,”
Hum. Factors
,
60
(
6
), pp.
793
805
.
8.
Hjelmervik
,
K.
,
Nazir
,
S.
, and
Myhrvold
,
A.
,
2018
, “
Simulator Training for Maritime Complex Tasks: An Experimental Study
,”
WMU J. Marit. Aff.
,
17
(
1
), pp.
17
30
.
9.
Zhang
,
X.
,
Yin
,
Y.
, and
Wan
,
F.
,
2019
, “
Underwater Manipulation Training Simulation System for Manned Deep Submarine Vehicle
,”
Proceedings of the 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019
,
Osaka, Japan
,
Mar. 23–27
, pp.
53
64
.
10.
Van Wyk
,
E.
, and
De Villiers
,
R.
,
2009
, “
Virtual Reality Training Applications for the Mining Industry
,”
Proceedings of AFRIGRAPH 2009 6th International Conference on Computer Graphics and Virtual Reality, Visualization and Interaction in Africa
,
Pretoria, South Africa
,
Feb. 4–6
, pp.
53
64
.
11.
Pinheiro
,
A.
,
Fernandes
,
P.
,
Maia
,
A.
,
Cruz
,
G.
,
Pedrosa
,
D.
,
Fonseca
,
B.
,
Paredes
,
H.
,
Martins
,
P.
,
Morgado
,
L.
, and
Rafael
,
J.
,
2014
, “
Development of a Mechanical Maintenance Training Simulator in OpenSimulator for F-16 Aircraft Engines
,”
Entertain. Comput.
,
5
(
4
), pp.
347
355
.
12.
Barraclough
,
A.
, and
Guymer
,
I.
,
1998
, “
Virtual Reality—A Role in Environmental Engineering Education?
,”
Water Sci. Technol.
,
38
(
11
), pp.
303
310
.
13.
Colombo
,
S.
, and
Golzio
,
L.
,
2016
, “
The Plant Simulator as Viable Means to Prevent and Manage Risk Through Competencies Management: Experiment Results
,”
Saf. Sci.
,
84
, pp.
46
56
.
14.
Al-Adawi
,
M.
, and
Luimula
,
M.
,
2019
, “
Demo Paper: Virtual Reality in Fire Safety-Electric Cabin Fire Simulation
,”
Proceedings of the 10th IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2019
,
Naples, Italy
,
Oct. 23–25
, pp.
551
552
.
15.
Bailey
,
S. K. T.
,
Johnson
,
C. I.
,
Schroeder
,
B. L.
, and
Marraffino
,
M. D.
,
2017
, “
Using Virtual Reality for Training Maintenance Procedures
,”
Proceedings of the Interservice/Industry Training, Simulation, Education Conference 2017
,
Orlando, FL
,
Nov. 27–Dec. 1
, pp.
1
11
.
16.
Webel
,
S.
,
Bockholt
,
U.
,
Engelke
,
T.
,
Gavish
,
N.
,
Olbrich
,
M.
, and
Preusche
,
C.
,
2013
, “
An Augmented Reality Training Platform for Assembly and Maintenance Skills
,”
Rob. Auton. Syst.
,
61
(
4
), pp.
398
403
.
17.
Nazir
,
S.
,
Colombo
,
S.
, and
Manca
,
D.
,
2013
, “
Minimizing the Risk in the Process Industry by Using a Plant Simulator: A Novel Approach,” Chem
,”
Eng. Trans.
,
32
, pp.
109
114
.
18.
Vannoni
,
A.
,
Giugno
,
A.
, and
Sorce
,
A.
,
2021
, “
Integration of a Flue Gas Condensing Heat Pump Within a Combined Cycle: Thermodynamic, Environmental and Market Assessment
,”
Appl. Therm. Eng.
,
184
.
19.
Gowreesh
,
S.
,
Estrada
,
J.
,
Ong
,
C. K.
, and
Xiao
,
T. K.
,
2011
, “
Experimental Investigation of Boiler Pressure Behavior in Closed-Open-Closed System
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
024501
.
20.
Rossi
,
I.
,
Piantelli
,
L.
, and
Traverso
,
A.
,
2019
, “
Gas Turbine Combined Cycle Flexibility: A Dynamic Model for Compressor Intake Conditioning Through a Heat-Pump
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121016
.
21.
Rossi
,
I.
,
Traverso
,
A.
,
Hohloch
,
M.
,
Huber
,
A.
, and
Tucker
,
D.
,
2018
, “
Physics-Based Dynamic Models of Three SOFC/GT Emulator Test Rigs
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051702
.
22.
Rehan
,
A.
,
Habib
,
M. A.
,
Elshafei
,
M.
, and
Alzaharnah
,
I. T.
,
2018
, “
Modeling Time Variations of Boiler Efficiency
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052001
.
23.
Jizhou
,
W.
,
Yanping
,
Z.
,
Yu
,
L.
, and
Shuhong
,
H.
,
2012
, “
A Multizone Model of an Economizer in a 600 MW Boiler Unit
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041601
.
24.
Ilamathi
,
P.
,
Selladurai
,
V.
, and
Balamurugan
,
K.
,
2013
, “
Modeling and Optimization of Unburned Carbon in Coal-Fired Boiler Using Artificial Neural Network and Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032201
.
25.
Smrekar
,
J.
,
Assadi
,
M.
,
Fast
,
M.
,
Kuštrin
,
I.
, and
De
,
S.
,
2009
, “
Development of Artificial Neural Network Model for a Coal-Fired Boiler Using Real Plant Data
,”
Energy
,
34
(
2
), pp.
144
152
.
26.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Traverso
,
A. N.
, and
Massardo
,
A. F.
,
2012
, “
Hybrid System Test Rig: Chemical Composition Emulation With Steam Injection
,”
Appl. Energy
,
97
, pp.
809
815
.
27.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
28.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.
29.
Swagelok
,
2007
, Valve Sizing: Technical Bulletin (MS-06-84-E).
30.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L.
,
1993
,
Fluid Transients in Systems
, Vol.
1
,
Prentice Hall
,
Englewood Cliffs, NJ
.
31.
2022
, “
VIVE European Union | Discover Virtual Reality Beyond Imagination
,” https://www.vive.com/eu/, Accessed January 19, 2022.
32.
2022
, “
Tracking | Leap Motion Controller | Ultraleap
,” https://www.ultraleap.com/product/leap-motion-controller/, Accessed January 19, 2022.
33.
Giannini
,
F.
,
Lupinetti
,
K.
,
Monti
,
M.
,
Zhu
,
Y.
,
Anastasi
,
S.
,
Augugliaro
,
G.
,
Monica
,
L.
, and
Mantelli
,
L.
,
2022
, “
A Customizable Immersive Training System for Operators of Dangerous Equipment
,”
Chem. Eng. Trans.
,
91
, pp.
349
354
.
34.
Giannini
,
F.
,
Lupinetti
,
K.
,
Monti
,
M.
,
Zhu
,
Y.
,
Mantelli
,
L.
,
Anastasi
,
S.
,
Augugliaro
,
G.
, and
Monica
,
L.
,
2022
, “
A Customizable VR System Supporting Industrial Equipment Operator Training
,”
Comput. Aided. Des. Appl.
,
20
(
4
), pp.
716
730
.
35.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2007
, “
Early Start-up of Solid Oxide Fuel Cell Hybrid Systems With Ejector Cathodic Recirculation: Experimental Results and Model Verification
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
221
(
5
), pp.
627
635
.
You do not currently have access to this content.