Abstract

In the present work, fully coupled dynamic thermo-hydro-mechanical (THM) model was employed to investigate the advantage and disadvantages of supercritical CO2 (SCCO2) over water as geofluids. Low-temperature zone was found in both SCCO2-enhanced geothermal system (EGS) and water-EGS systems, but spatial expansion is higher in water-EGS. Although, the spatial expansion of SCCO2 into the rock matrix will help in the geo-sequestration, the expansion of stress and strain invaded zones were identified significantly in the vicinity of fracture and injection well. SCCO2-EGS system is giving better thermal breakthrough and geothermal life conditions compared to the water-EGS system. Reservoir flow impedance (RFI) and heat power are examined, and heat power is high in the water-EGS system. Minimum RFI is found in the SCCO2-EGS system at 45 °C and 0.05 m/s. Maximum heat power for SCCO2-EGS was observed at 35 °C, 20 MPa, and 0.15 m/s. Therefore, the developed dynamic THM model is having greater ability to examine the behavior of SCCO2-EGS and water-EGS systems effectively. The variations occur in the rock matrix, and the performance indicators are dependent on the type of fluid, injection/production velocities, initial reservoir pressure, and injection temperature. The advantages of SCCO2-EGS system over the water-EGS system provide a promising result to the geothermal industry as a geofluid.

References

1.
Zhao
,
Y.
,
Feng
,
Z.
,
Feng
,
Z.
,
Yang
,
D.
, and
Liang
,
W.
,
2015
, “
THM (Thermo-hydro-mechanical) Coupled Mathematical Model of Fractured Media and Numerical Simulation of a 3D Enhanced Geothermal System at 573 K and Buried Depth 6000 e 7000 M
,”
Energy
,
82
, pp.
193
205
.
2.
Sonnenthal
,
E. L.
,
Smith
,
J. T.
,
Cladouhos
,
T.
,
Kim
,
J.
,
Yang
,
L.
,
Division
,
E. S.
,
Berkeley
,
L.
,
Ms-c
,
C. R.
, and
Day
,
J.
,
2015
, “
Thermal-Hydrological-Mechanical-Chemical Modeling of the 2014 EGS Stimulation Experiment at Newberry Volcano, Oregon
,” 1(2012), pp.
1
5
.
3.
Vallier
,
B.
,
Magnenet
,
V.
,
Schmittbuhl
,
J.
, and
Fond
,
C.
,
2018
, “
THM Modeling of Hydrothermal Circulation at Rittershoffen Geothermal Site, France
,”
Geotherm. Energy
,
6
(
1
), pp.
1
26
.
4.
Babaei
,
M.
, and
Nick
,
H. M.
,
2019
, “
Performance of Low-Enthalpy Geothermal Systems: Interplay of Spatially Correlated Heterogeneity and Well-Doublet Spacings
,”
Appl. Energy
,
253
, p.
113569
.
5.
Rabemanana
,
V.
,
Durst
,
P.
,
Bächler
,
D.
,
Vuataz
,
F. D.
, and
Kohl
,
T.
,
2003
, “
Geochemical Modelling of the Soultz-Sous-Forêts Hot Fractured Rock System Comparison of Two Reservoirs at 3.8 and 5 Km Depth
,”
Geothermics
,
32
(
4
), pp.
645
653
.
6.
Zeng
,
Y.
,
Tang
,
L.
,
Wu
,
N.
, and
Cao
,
Y.
,
2017
, “
Analysis of Influencing Factors of Production Performance of Enhanced Geothermal System: A Case Study at Yangbajing Geothermal Field
,”
Energy
,
127
, pp.
218
235
.
7.
Brown
,
D.
,
2000
, “
A Hot Dry Rock Geothermal Energy Concept Utilizing Supercritical CO2 Instead of Water
,”
Twenty-Fifth Workshop on Geothermal Reservoir Engineering
,
pp.
1
6
.
8.
Biagi
,
J.
,
Agarwal
,
R.
, and
Zhang
,
Z.
,
2015
, “
Simulation and Optimization of Enhanced Geothermal Systems Using CO2 as a Working Fluid
,”
Energy
,
86
, pp.
627
637
.
9.
Zhang
,
F. Z.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2016
, “
Thermodynamic Analysis of Enhanced Geothermal Systems Using Impure CO2 as the Geofluid
,”
Appl. Therm. Eng.
,
99
, pp.
1277
1285
.
10.
Pan
,
C.
,
Chávez
,
O.
,
Romero
,
C. E.
,
Levy
,
E. K.
,
Aguilar Corona
,
A.
, and
Rubio-Maya
,
C.
,
2016
, “
Heat Mining Assessment for Geothermal Reservoirs in Mexico Using Supercritical CO2 Injection
,”
Energy
,
102
, pp.
148
160
.
11.
Zhang
,
L.
,
Li
,
X.
,
Zhang
,
Y.
,
Cui
,
G.
,
Tan
,
C.
, and
Ren
,
S.
,
2017
, “
CO2 Injection for Geothermal Development Associated With EGR and Geological Storage in Depleted High-Temperature Gas Reservoirs
,”
Energy
,
123
, pp.
139
148
.
12.
Pan
,
L.
,
Freifeld
,
B.
,
Doughty
,
C.
,
Zakem
,
S.
,
Sheu
,
M.
,
Cutright
,
B.
, and
Terrall
,
T.
,
2015
, “
Fully Coupled Wellbore-Reservoir Modeling of Geothermal Heat Extraction Using CO2 as the Working Fluid
,”
Geothermics
,
53
, pp.
100
113
.
13.
Olasolo
,
P.
,
Juárez
,
M. C.
,
Morales
,
M. P.
,
D’Amico
,
S.
, and
Liarte
,
I. A.
,
2016
, “
Enhanced Geothermal Systems (EGS): A Review
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
133
144
.
14.
Liu
,
S.
,
Agarwal
,
R.
, and
Sun
,
B.
,
2022
, “
Numerical Simulation and Optimization of CO2 Enhanced Gas Recovery in Homogeneous and Vertical Heterogeneous Reservoir Models
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033009
.
15.
Pandey
,
S. N.
,
Vishal
,
V.
, and
Chaudhuri
,
A.
,
2018
, “
Geothermal Reservoir Modeling in a Coupled Thermo-Hydro-Mechanical- Chemical Approach : A Review
,”
Earth Sci. Rev.
,
185
, pp.
1157
1169
.
16.
Pandey
,
S. N.
, and
Chaudhuri
,
A.
,
2017
, “
The Effect of Heterogeneity on Heat Extraction and Transmissivity Evolution in a Carbonate Reservoir : A Thermo-Hydro-Chemical Study
,”
Geothermics
,
69
, pp.
45
54
.
17.
Zhang
,
J.
,
Xie
,
J.
, and
Liu
,
X.
,
2019
, “
Numerical Evaluation of Heat Extraction for EGS With Tree-Shaped Wells
,”
Int. J. Heat Mass Transfer
,
134
, pp.
296
310
.
18.
Gläser
,
D.
,
Flemisch
,
B.
,
Helmig
,
R.
, and
Class
,
H.
,
2019
, “
A Hybrid-Dimensional Discrete Fracture Model for Non-Isothermal Two-Phase Flow in Fractured Porous Media
,”
GEM - Int. J. Geomath.
,
10
(
1
), pp.
5-1
5-25
.
19.
Sun
,
Z.
,
Xin
,
Y.
,
Yao
,
J.
,
Zhang
,
K.
,
Zhuang
,
L.
,
Zhu
,
X.
,
Wang
,
T.
, and
Jiang
,
C.
,
2018
, “
Numerical Investigation on the Heat Extraction Capacity of Dual Horizontal Wells in Enhanced Geothermal Systems Based on the 3-D THM Model
,”
Energies
,
11
(
2
), pp.
1
19
.
20.
Ghassemi
,
A.
, and
Suresh Kumar
,
G.
,
2007
, “
Changes in Fracture Aperture and Fluid Pressure Due to Thermal Stress and Silica Dissolution/Precipitation Induced by Heat Extraction From Subsurface Rocks
,”
Geothermics
,
36
(
2
), pp.
115
140
.
21.
Guo
,
T.
,
Tang
,
S.
,
Sun
,
J.
,
Gong
,
F.
,
Liu
,
X.
,
Qu
,
Z.
, and
Zhang
,
W.
,
2019
, “
A Coupled Thermal-Hydraulic-Mechanical Modeling and Evaluation of Geothermal Extraction in the Enhanced Geothermal System Based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation
,”
Appl. Energy
,
258
, p.
113981
.
22.
Watanabe
,
N.
,
Wang
,
W.
,
McDermott
,
C. I.
,
Taniguchi
,
T.
, and
Kolditz
,
O.
,
2010
, “
Uncertainty Analysis of Thermo-Hydro-Mechanical Coupled Processes in Heterogeneous Porous Media
,”
Comput. Mech.
,
45
(
4
), pp.
263
280
.
23.
Jansen
,
G.
,
Valley
,
B.
, and
Miller
,
S. A.
,
2018
, “
THERMAID—A Matlab Package for Thermo-Hydraulic Modeling and Fracture Stability Analysis in Fractured Reservoirs
.”
24.
Wang
,
S.
,
Huang
,
Z.
,
Wu
,
Y. S.
,
Winterfeld
,
P. H.
, and
Zerpa
,
L. E.
,
2016
, “
A Semi-Analytical Correlation of Thermal-Hydraulic-Mechanical Behavior of Fractures and Its Application to Modeling Reservoir Scale Cold Water Injection Problems in Enhanced Geothermal Reservoirs
,”
Geothermics
,
64
, pp.
81
95
.
25.
Lepillier
,
B.
,
Daniilidis
,
A.
,
Doonechaly Gholizadeh
,
N.
,
Bruna
,
P. O.
,
Kummerow
,
J.
, and
Bruhn
,
D.
,
2019
, “
A Fracture Flow Permeability and Stress Dependency Simulation Applied to Multi-Reservoirs, Multi-Production Scenarios Analysis
,”
Geotherm. Energy
,
7
(
1
), pp.
24-1
24-16
.
26.
Dobson
,
P. F.
,
Kneafsey
,
T. J.
,
Nakagawa
,
S.
,
Sonnenthal
,
E. L.
,
Voltolini
,
M.
,
Smith
,
J. T.
, and
Borglin
,
S. E.
,
2021
, “
Fracture Sustainability in Enhanced Geothermal Systems: Experimental and Modeling Constraints
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
100901
.
27.
Zeng
,
Y. C.
,
Wu
,
N. Y.
,
Su
,
Z.
,
Wang
,
X. X.
, and
Hu
,
J.
,
2013
, “
Numerical Simulation of Heat Production Potential From Hot Dry Rock by Water Circulating Through a Novel Single Vertical Fracture at Desert Peak Geothermal Field
,”
Energy
,
63
, pp.
268
282
.
28.
Fox
,
D. B.
,
Sutter
,
D.
,
Beckers
,
K. F.
,
Lukawski
,
M. Z.
,
Koch
,
D. L.
,
Anderson
,
B. J.
, and
Tester
,
J. W.
,
2013
, “
Sustainable Heat Farming: Modeling Extraction and Recovery in Discretely Fractured Geothermal Reservoirs
,”
Geothermics
,
46
, pp.
42
54
.
29.
Suzuki
,
A.
,
Fomin
,
S. A.
,
Chugunov
,
V. A.
,
Niibori
,
Y.
, and
Hashida
,
T.
,
2016
, “
Fractional Diffusion Modeling of Heat Transfer in Porous and Fractured Media
,”
Int. J. Heat Mass Transfer
,
103
, pp.
611
618
.
30.
Pandey
,
S. N.
, and
Vishal
,
V.
,
2017
, “
Sensitivity Analysis of Coupled Processes and Parameters on the Performance of Enhanced Geothermal Systems
,”
Sci. Rep.
,
7
(
1
), pp.
1
14
.
31.
Dahi Taleghani
,
A.
,
2013
, “
An Improved Closed-Loop Heat Extraction Method From Geothermal Resources
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042904
.
32.
Taleghani
,
A. D.
, and
Ahmadi
,
M.
,
2020
, “
Thermoporoelastic Analysis of Artificially Fractured Geothermal Reservoirs: A Multiphysics Problem
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
081302
.
33.
Zhang
,
L.
,
Cui
,
G.
,
Zhang
,
Y.
,
Ren
,
B.
,
Ren
,
S.
, and
Wang
,
X.
,
2016
, “
Influence of Pore Water on the Heat Mining Performance of Supercritical CO2 Injected for Geothermal Development
,”
J. CO2 Util.
,
16
, pp.
287
300
.
34.
Pan
,
C.
,
Romero
,
C. E.
,
Levy
,
E. K.
,
Wang
,
X.
,
Rubio-Maya
,
C.
, and
Pan
,
L.
,
2018
, “
Fully Coupled Wellbore-Reservoir Simulation of Supercritical CO2 Injection From Fossil Fuel Power Plant for Heat Mining From Geothermal Reservoirs
,”
J. CO2 Util.
,
27
, pp.
480
492
.
35.
Qu
,
Z. Q.
,
Zhang
,
W.
, and
Guo
,
T. K.
,
2017
, “
Influence of Different Fracture Morphology on Heat Mining Performance of Enhanced Geothermal Systems Based on COMSOL
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18263
18278
.
36.
Yin
,
S.
,
Dusseault
,
M. B.
, and
Rothenburg
,
L.
,
2011
, “
Coupled THMC Modeling of CO 2 Injection by Finite Element Methods
,”
J. Pet. Sci. Eng.
,
80
(
1
), pp.
53
60
.
37.
Zhang
,
F. Z.
,
Jiang
,
P. X.
, and
Xu
,
R. N.
,
2013
, “
System Thermodynamic Performance Comparison of CO2-EGS and Water-EGS Systems
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
236
244
.
38.
Garapati
,
N.
,
Randolph
,
J. B.
, and
Saar
,
M. O.
,
2015
, “
Brine Displacement by CO2, Energy Extraction Rates, and Lifespan of a CO2-Limited CO2-Plume Geothermal (CPG) System With a Horizontal Production Well
,”
Geothermics
,
55
, pp.
182
194
.
39.
Chen
,
Z.
,
Huan
,
G.
, and
Ma
,
Y.
,
2006
,
Computational Methods for Multiphase Flows in Porous Media
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
40.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
41.
Biot
,
M. A.
,
1955
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. Appl. Phys.
,
26
(
2
), pp.
182
185
.
42.
Li
,
S.
,
Feng
,
X. T.
,
Zhang
,
D.
, and
Tang
,
H.
,
2019
, “
Coupled Thermo-Hydro-Mechanical Analysis of Stimulation and Production for Fractured Geothermal Reservoirs
,”
Appl. Energy
,
247
, pp.
40
59
.
43.
Liu
,
G.
,
Pu
,
H.
,
Zhao
,
Z.
, and
Liu
,
Y.
,
2019
, “
Coupled Thermo-Hydro-Mechanical Modeling on Well Pairs in Heterogeneous Porous Geothermal Reservoirs
,”
Energy
,
171
, pp.
631
653
.
44.
Freeman
,
T. T.
,
Chalaturnyk
,
R. J.
, and
Bogdanov
,
I. I.
,
2008
, “
Fully Coupled Thermo-Hydro-Mechanical Modeling by COMSOL Multiphysics, With Applications in Reservoir Geomechanical Characterization
,”
COMSOL Conference
,
Boston, MA
, pp.
1
12
.
45.
Freeman
,
T. T.
,
Chalaturnyk
,
R. J.
, and
Bogdanov
,
I. I.
,
2008
, “
THM Modeling for Reservoir Geomechanical Applications
,”
Comsol Conference
,
Boston, MA
.
46.
Liu
,
J.
,
2009
, “
A Porosity-Based Model for Coupled Thermal-Hydraulic-Mechanical Processes
.”
47.
Miller
,
S. A.
,
2015
, “
Modeling Enhanced Geothermal Systems and the Essential Nature of Large-Scale Changes in Permeability at the Onset of Slip
,”
Geofluids
,
15
(
1–2
), pp.
338
349
.
48.
Touhidi-Baghini
,
A.
,
1998
, “
Absolute Permeability of McMurray For- Mation Oil Sands at Low Confining Stresses
.”
49.
Gudala
,
M.
, and
Govindarajan
,
S. K.
,
2021
, “
Numerical Investigations on a Geothermal Reservoir Using Fully Coupled Thermo-Hydro-Geomechanics With Integrated RSM-Machine Learning and ARIMA Models
,”
Geothermics
,
96
, p.
102174
.
50.
COMSOL
,
2018
, “
Subsurface Flow Module User Guide (Version 5.4)
,” pp.
1
256
.
51.
Fokker
,
P. A.
,
2015
, “
Thermo-hydro-mechanical Modeling of EGS Using COMSOL Multiphysics
,”
Proceedings of the 40th Stanford Geothermal Workshop
,
Stanford, CA
, Vol. 1, pp.
1
10
.
52.
Sanaee
,
R.
,
Oluyemi
,
G. F.
,
Hossain
,
M.
, and
Oyeneyin
,
M. B.
,
2012
, “
Fracture-Matrix Flow Partitioning and Cross Flow : Numerical Modeling of Laboratory Fractured Core Flood
,”
COMSOL Conference.
53.
Norouzi
,
M.
,
Dorrani
,
S.
,
Shokri
,
H.
, and
Anwar Bég
,
O.
,
2019
, “
Effects of Viscous Dissipation on Miscible Thermo-viscous Fingering Instability in Porous Media
,”
Int. J. Heat Mass Transfer
,
129
, pp.
212
223
.
54.
Gudala
,
M.
, and
Govindarajan
,
S. K.
,
2020
, “
Numerical Modelling of Coupled Single-Phase Fluid Flow and Geomechanics in a Fractured Porous Media
,”
J. Pet. Sci. Eng.
,
191
, p.
107215
.
55.
Gudala
,
M.
, and
Govindarajan
,
S. K.
,
2020
, “
Numerical Modeling of Coupled Fluid Flow and Geomechanical Stresses in a Petroleum Reservoir
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063006
.
56.
Gudala
,
M.
, and
Govindarajan
,
S. K.
,
2021
, “
Numerical Investigations on Two-Phase Fluid Flow in a Fractured Porous Medium Fully Coupled With Geomechanics
,”
J. Pet. Sci. Eng.
,
199
, p.
108328
.
57.
Van Rijn
,
S.
,
2018
, “
Breakthrough Time of a Geothermal Reservoir (Estimating the Impact of Well Spacing, Reservoir and Operational Inputs on the Breakthrough Time of a Geothermal Doublet)
.
58.
Zeng
,
Y. C.
,
Su
,
Z.
, and
Wu
,
N. Y.
,
2013
, “
Numerical Simulation of Heat Production Potential From Hot Dry Rock by Water Circulating Through Two Horizontal Wells at Desert Peak Geothermal Field
,”
Energy
,
56
, pp.
92
107
.
59.
Evans
,
K.
,
2010
, “
Enhanced/Engineered Geothermal System: An Introduction with Overviews of Deep Systems Built and Circulated to Date
,”
Geothermal Energy in China: Past and Future, Geological Publishing House
, pp.
395
418
.
You do not currently have access to this content.