Abstract

Biodiesel, which may be produced from crops, animal fat, as well as waste products from both industrial and residential sectors, is one of the alternative fuels that are utilized extensively. These biodiesels may either be used on their own or combined with regular diesel. Because biodiesels are becoming increasingly popular as a substitute for fossil fuels, the amount of attention paid to studying them has been growing steadily over the past few years. However, the results on the features of the noise and vibration are still missing, and much more emphasis has to be placed on the study conducted in that particular field. In this study, the combustion, noise, and vibration properties of Scenedesmus dimorphus microalgae biodiesel were investigated both with and without the provision of hydrogen. At the rate of 5 l/min, the supply of hydrogen was made available. Both B10 (10% of Scenedesmus dimorphus microalgae biodiesel and 90% pure diesel) and B20 (20% of Scenedesmus dimorphus microalgae biodiesel and 80% pure diesel) were employed as the biodiesel compositions. In addition, the source of hydrogen was made available for the diesel in its purest form as well as the two biodiesel mixes that remained. The fuels that were obtained consisted of neat microalgae blends containing 0% microalgae B0H5, 10% microalgae B10H5, and 20% microalgae containing B20H5. In this study, the performance of pure diesel was compared to the findings obtained from hydrogen-enriched fuel blends, simple biodiesel blends, and a combination of the two. Each and every experimental test was carried out using a diesel engine with a single-cylinder, water cooling, and four strokes. The tests were carried out with the load varying 25% in-between from 0% to 100%. Based on the findings, it was discovered that increasing the proportion of biodiesel fuel and adding hydrogen to the engine both contributed to a reduction in the amount of vibration and noise that was generated by the vehicle. The combustion qualities were also improved by the mixing of hydrogen and biodiesel as hybrid fuel.

References

1.
Serrano
,
J. R.
,
Novella
,
R.
, and
Piqueras
,
P.
,
2019
, “
Why the Development of Internal Combustion Engines Is Still Necessary to Fight Against Global Climate Change From the Perspective of Transportation
,”
Appl. Sci.
,
9
(
21
), p.
4597
.
2.
Rouhany
,
M.
, and
Montgomery
,
H.
,
2019
, “Global Biodiesel Production: The State of the Art and Impact on Climate Change,”
Biodiesel
,
Springer
, pp.
1
4
.
3.
Hosseinzadeh-Bandbafha
,
H.
,
Kumar
,
D.
,
Singh
,
B.
,
Shahbeig
,
H.
,
Lam
,
S. S.
,
Aghbashlo
,
M.
, and
Tabatabaei
,
M.
,
2022
, “
Biodiesel Antioxidants and Their Impact on the Behavior of Diesel Engines: A Comprehensive Review
,”
Fuel Process. Technol.
,
232
(
1
), p.
107264
.
4.
Vochozka
,
M.
,
Horak
,
J.
,
Krulický
,
T.
, and
Pardal
,
P.
,
2020 Jul 1
, “
Predicting Future Brent oil Price on Global Markets
,”
Acta Montan. Slovaca
,
25
(
3
), pp.
375
392
. DOI:10.46544/AMS.v25i3.10
5.
Othman
,
M. F.
,
Adam
,
A.
,
Najafi
,
G.
, and
Mamat
,
R.
,
2017
, “
Green Fuel As Alternative Fuel for Diesel Engine: A Review
,”
Renew. Sust. Energy Rev.
,
80
, pp.
694
709
.
6.
Fernández-Rodríguez
,
D.
,
Lapuerta
,
M.
, and
German
,
L.
,
2021
, “
Progress in the Use of Biobutanol Blends in Diesel Engines
,”
Energies
,
14
(
11
), p.
3215
.
7.
Huang
,
J.
,
Wang
,
Y.
,
Li
,
S.
,
Roskilly
,
A. P.
,
Yu
,
H.
, and
Li
,
H.
,
2009
, “
Experimental Investigation on the Performance and Emissions of a Diesel Engine Fuelled With Ethanol–Diesel Blends
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2484
2490
.
8.
Gerald Liu
,
Z.
, and
Munnannur
,
A.
,
2020
, “Design and Development of Heavy Duty Diesel Engines,”
Energy, Environment, and Sustainability
,
Springer
,
Singapore
, pp.
887
914
. doi.org/10.1007/978-981-15-0970-4_24
9.
Zhang
,
X.
,
Yang
,
R.
,
Anburajan
,
P.
,
Le
,
Q. V.
,
Alsehli
,
M.
,
Xia
,
C.
, et al
,
2022
, “
Assessment of Hydrogen and Nanoparticles Blended Biodiesel on the Diesel Engine Performance and Emission Characteristics
,”
Fuel
,
307
, p.
121780
.
10.
Choudhary
,
A. K.
,
2021
, “Effect of Bioethanol-Diesel Blends on the Vibrations of Diesel Engine,”
Recent Advances in Mechanical Engineering
,
A.
Kumar
,
A.
Pal
,
S. S.
Kachhwaha
, and
P. K.
Jain
, eds.,
Springer
,
Singapore
, pp.
407
418
.
11.
Kałużny
,
J.
,
Waligorski
,
M.
,
Szymański
,
G. M.
,
Merkisz
,
J.
,
Różański
,
J.
,
Nowicki
,
M.
,
Al Karawi
,
M.
, and
Kempa
,
K.
,
2020
, “
Reducing Friction and Engine Vibrations With Trace Amounts of Carbon Nanotubes in the Lubricating Oil
,”
Tribol. Int.
,
151
, p.
106484
.
12.
Ashok
,
B.
,
Jeevanantham
,
A. K.
,
Prabhu
,
K.
,
Shirude
,
P. M.
,
Shinde
,
D. D.
,
Nadgauda
,
N. S.
, and
Karthick
,
C.
,
2021
, “
Multi-Objective Optimization on Vibration and Noise Characteristics of Light Duty Biofuel Powered Engine at Idling Condition Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042301
.
13.
Asanuma
,
T.
,
Hirota
,
S.
,
Yanaka
,
M.
,
Tsukasaki
,
Y.
, and
Tanaka
,
T.
,
2003
, “
Effect of Sulfur-Free and Aromatics-Free Diesel Fuel on Vehicle Exhaust Emissions Using Simultaneous PM and NOx Reduction System
,”
SAE Trans.
, pp.
1448
1455
.
14.
Sonne
,
C.
,
Xia
,
C.
, and
Lam
,
S. S.
,
2022
, “
Is Engineered Wood China's Way to Carbon Neutrality?
,”
J. Bioresour. Bioprod.
,
7
(
2
), pp.
83
84
.
15.
Ogunkunle
,
O.
, and
Ahmed
,
N. A.
,
2019
, “
A Review of Global Current Scenario of Biodiesel Adoption and Combustion in Vehicular Diesel Engines
,”
Energy Rep.
,
5
, pp.
1560
1579
.
16.
Ge
,
S.
,
Brindhadevi
,
K.
,
Xia
,
C.
,
Salah Khalifa
,
A.
,
Elfasakhany
,
A.
,
Unpaprom
,
Y.
, and
Doan
,
H. V.
,
2022
, “
Enhancement of the Combustion, Performance and Emission Characteristics of Spirulina Microalgae Biodiesel Blends Using Nanoparticles
,”
Fuel
,
308
, p.
121822
.
17.
Maroušek
,
J.
, and
Gavurová
,
B.
,
2022
, “
Recovering Phosphorous From Biogas Fermentation Residues Indicates Promising Economic Results
,”
Chemosphere
,
291
, p.
133008
.
18.
Takada
,
K.
,
Yoshimura
,
F.
,
Ohga
,
Y.
,
Kusaka
,
J.
, and
Daisho
,
Y.
,
2003
,
Experimental Study on Unregulated Emission Characteristics of Turbocharged DI Diesel Engine With Common Rail Fuel Injection System
, SAE Technical Paper, October 27.
19.
Xiao
,
H.
,
Wang
,
R.
,
Zeng
,
P.
,
Jiang
,
A.
,
Hou
,
B.
, and
Yang
,
S.
,
2017
, “
Particulate Matter and Unregulated Emissions of Diesel Engine Fueled With 2-Methylfuran Diesel Blends
,”
Fuel
,
208
, pp.
168
173
.
20.
Ugochukwu
,
U. C.
, and
Ochonogor
,
A.
,
2018
, “
Groundwater Contamination by Polycyclic Aromatic Hydrocarbon Due to Diesel Spill From a Telecom Base Station in a Nigerian City: Assessment of Human Health Risk Exposure
,”
Environ. Monitoring Assess.
,
190
(
4
), pp.
1
4
.
21.
Fu
,
J.
,
2019
, “
Flash Points Measurements and Prediction of Biofuels and Biofuel Blends With Aromatic Fluids
,”
Fuel
,
241
, pp.
892
900
.
22.
Kaniapan
,
S.
,
Hassan
,
S.
,
Ya
,
H.
,
Patma Nesan
,
K.
, and
Azeem
,
M.
,
2021 Mar 12
, “
The Utilisation of Palm oil and oil Palm Residues and the Related Challenges as a Sustainable Alternative in Biofuel, Bioenergy, and Transportation Sector: A Review
,”
Sustainability
,
13
(
6
), p.
3110
.
23.
Lam
,
S. S.
,
Xia
,
C.
, and
Sonne
,
C.
,
2022
, “
Plastic Crisis Underscores Need for Alternative Sustainable-Renewable Materials
,”
J. Bioresour. Bioprod.
,
7
(
3
), pp.
145
147
.
24.
Xia
,
C.
,
Brindhadevi
,
K.
,
Elfasakhany
,
A.
,
Alsehli
,
M.
, and
Tola
,
S.
,
2021
, “
Performance, Combustion and Emission Analysis of Castor Oil Biodiesel Blends Enriched With Nanoadditives and Hydrogen Fuel Using CI Engine
,”
Fuel
,
306
, p.
121541
.
25.
Boomadevi
,
P.
,
Paulson
,
V.
,
Samlal
,
S.
,
Varatharajan
,
M.
,
Sekar
,
M.
,
Alsehli
,
M.
,
Elfasakhany
,
A.
, and
Tola
,
S.
,
2021
, “
Impact of Microalgae Biofuel on Microgas Turbine Aviation Engine: A Combustion and Emission Study
,”
Fuel
,
302
, p.
121155
.
26.
Lelieveld
,
J.
,
Klingmüller
,
K.
,
Pozzer
,
A.
,
Burnett
,
R. T.
,
Haines
,
A.
, and
Ramanathan
,
V.
,
2019
, “
Effects of Fossil Fuel and Total Anthropogenic Emission Removal on Public Health and Climate
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
15
), pp.
7192
7197
.
27.
Praveenkumar
,
T. R.
,
Prabu
,
V.
, and
Balamoorthy
,
D.
,
2022
, “
Pyrolysis Oil for Diesel Engines From Plastic Solid Waste: A Performance, Combustion and Emission Study
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
3223
3227
.
28.
Anderson
,
A.
,
Al-Mohaimeed
,
A. M.
,
Elshikh
,
M. S.
,
Praveenkumar
,
T. R.
, and
Sekar
,
M.
,
2021
, “
Exergy and Energy Analysis of α-Fe2O3-Doped Al2O3 Nanocatalyst-Based Biodiesel Blends—Performance and Emission Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120902
.
29.
Alternative Fuels Data Center: Biodiesel Vehicle Emissions
,
n.d.
, https://afdc.energy.gov/vehicles/diesels_emissions.html, (Accessed July 14, 2022).
30.
Demirbas
,
A.
,
2007
Sep
1
, “
Importance of Biodiesel As Transportation Fuel
,”
Energy Policy
,
35
(
9
), pp.
4661
4670
.
31.
Hung
,
T. M.
,
Ngo
,
H. K. T.
,
Luong
,
L. M. T.
,
Le
,
H. H. T. C.
,
Phung
,
D.
,
Chinh
,
P. M.
,
Nghiem
,
S.
,
Hue
,
N. T.
, and
Thai
,
P. K.
,
2022
, “
Higher Diesel Price Is Associated With Lower Level of Pollution: Evidence From Vietnam
,”
J. Cleaner Prod.
361
, p.
132245
.
32.
Tejada Carbajal
,
E. M.
,
Martínez Hernández
,
E.
,
Fernández Linares
,
L.
,
Novelo Maldonado
,
E.
, and
Limas Ballesteros
,
R.
,
2020
, “
Techno-Economic Analysis of Scenedesmus dimorphus Microalgae Biorefinery Scenarios for Biodiesel Production and Glycerol Valorization
,”
Bioresour. Technol. Rep.
,
12
, p.
100605
.
33.
Arutselvan
,
C.
,
Narchonai
,
G.
,
Pugazhendhi
,
A.
,
LewisOscar
,
F.
, and
Thajuddin
,
N.
,
2021
, “
Evaluation of Microalgal Strains and Microalgal Consortium for Higher Lipid Productivity and Rich Fatty Acid Profile Towards Sustainable Biodiesel Production
,”
Bioresour. Technol.
,
339
, p.
125524
.
34.
Gunasekar
,
P.
,
Manigandan
,
S.
, and
Praveenkumar
,
T. R.
,
2021
, “
Hydrogen As the Futuristic Fuel for the Aviation and Aerospace Industry—Review
,”
Aircraft Eng. Aerosp. Technol.
,
93
(
3
), pp.
410
416
.
35.
Zhang
,
M.
,
Ramya
,
G.
,
Brindhadevi
,
K.
,
Alsehli
,
M.
,
Elfasakhany
,
A.
,
Xia
,
C.
, et al.
,
2022
, “
Microwave Assisted Biodiesel Production From Chicken Feather Meal Oil Using Bio-Nano Calcium Oxide Derived From Chicken Egg Shell
,”
Environ. Res.
,
205
, p.
112509
.
36.
Sati
,
H.
,
Mitra
,
M.
,
Mishra
,
S.
, and
Baredar
,
P.
,
2019
, “
Microalgal Lipid Extraction Strategies for Biodiesel Production: A Review
,”
Algal Res.
,
38
, p.
101413
.
37.
Thiyagarajan
,
S.
,
Varuvel
,
E.
,
Karthickeyan
,
V.
,
Sonthalia
,
A.
,
Kumar
,
G.
,
Saravanan
,
C. G.
,
Dhinesh
,
B.
, and
Pugazhendhi
,
A.
,
2022
, “
Effect of Hydrogen on Compression-Ignition (CI) Engine Fueled With Vegetable Oil/Biodiesel From Various Feedstocks: A Review
,”
Int. J. Hydrogen Energy.
,
47
(
88
), pp.
37648
37667
.
38.
Işcan
,
B.
,
2020
, “
ANN Modeling for Justification of Thermodynamic Analysis of Experimental Applications on Combustion Parameters of a Diesel Engine Using Diesel and Safflower Biodiesel Fuels
,”
Fuel
,
279
(
1
), p.
118391
.
39.
Gawale
,
G. R.
, and
Naga Srinivasulu
,
G.
,
2020
, “
Experimental Investigation of Ethanol/Diesel and Ethanol/Biodiesel on Dual Fuel Mode HCCI Engine for Different Engine Load Conditions
,”
Fuel
,
263
, p.
116725
.
40.
Rajasekar
,
E.
, and
Selvi
,
S.
,
2014
, “
Review of Combustion Characteristics of CI Engines Fueled With Biodiesel
,”
Renew. Sust. Energy Rev.
,
35
, pp.
390
399
.
41.
Bittle
,
J. A.
,
Knight
,
B. M.
, and
Jacobs
,
T. J.
,
2010
, “
Interesting Behavior of Biodiesel Ignition Delay and Combustion Duration
,”
Energy Fuels
,
24
(
8
), pp.
4166
4177
.
42.
Wang
,
X.
,
Zhang
,
Y.
,
Karthikeyan
,
C.
,
Boomadevi
,
P.
,
Marousek
,
J.
,
Nasif
,
O.
, et al.
,
2022
, “
Role of Injection Pressure on Fuel Atomization and Spray Penetration on the Thevetia Peruviana and Jatropha Curcas Biodiesel Blends With Nanoparticle
,”
Fuel
,
324
(
Part B
), p.
124527
.
43.
Nag
,
S.
,
Dhar
,
A.
, and
Gupta
,
A.
,
2022
, “
Hydrogen-Diesel Co-Combustion Characteristics, Vibro-Acoustics and Unregulated Emissions in EGR Assisted Dual Fuel Engine
,”
Fuel
,
307
, p.
121925
.
44.
Maroušek
,
J.
,
Strunecký
,
O.
,
Bartoš
,
V.
, and
Vochozka
,
M.
,
2022
, “
Revisiting Competitiveness of Hydrogen and Algae Biodiesel
,”
Fuel
,
328
, p.
125317
.
45.
Temizer
,
İ
, and
Cihan
,
Ö
,
2021
, “
Analysis of Different Combustion Chamber Geometries Using Hydrogen/Diesel Fuel in a Diesel Engine
,”
Energy Sources Part A Recovery Utilization Environ. Effects
,
43
(
1
), pp.
17
34
.
46.
Patel
,
C.
,
Tiwari
,
N.
, and
Agarwal
,
A. K.
,
2019
, “
Experimental Investigations of Soyabean and Rapeseed SVO and Biodiesels on Engine Noise, Vibrations, and Engine Characteristics
,”
Fuel
,
238
, pp.
86
97
.
47.
Santana
,
C. M.
,
Barros
,
J. E.
, and
de Almeida Junior
,
H. A.
,
2022
, “
Experimental Analysis Between Performance Parameters for an Internal Combustion Engine Fueled by Gasoline and Ethanol When Submitted to Engine Block Vibration
,”
J. Brazil. Soc. Mech. Sci. Eng.
,
44
(
8
), pp.
1
0
.
48.
Kumar
,
A. S.
,
Karthikeyan
,
L.
,
Alharbi
,
S. A.
, and
Salmen
,
S. H.
,
2023
, “
Assessment of the Engine Vibration and Noise Characteristics of an Unmodified Direct Injection Engine Powered With Non-Feedstock Citrullus Lanatus Seed Oil
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012304
.
49.
Satsangi
,
D. P.
, and
Tiwari
,
N.
,
2018
, “
Experimental Investigation on Combustion, Noise, Vibrations, Performance and Emissions Characteristics of Diesel/n-Butanol Blends Driven Genset Engine
,”
Fuel
,
221
, pp.
44
60
.
50.
Pasricha
,
M. P.
, and
Hashim
,
F. M.
,
2006
, “
Effect of the Reciprocating Mass of Slider-Crank Mechanism on Torsional Vibrations of Diesel Engine Systems
,”
Asean J. Sci. Technol. Develop.
,
23
(
1–2
), pp.
71
81
. DOI: 10.29037/ajstd.94
51.
Singh
,
A.
,
Choudhary
,
A. K.
,
Sinha
,
S.
,
Panchal
,
H.
, and
Sadasivuni
,
K. K.
,
2022
, “
Analysis of Vibrations in a Diesel Engine Produced by Jatropha Biodiesel Using Heterogeneous Catalyst
,”
Energy and Environment
.
52.
Patel
,
C.
,
Lee
,
S.
,
Tiwari
,
N.
,
Agarwal
,
A. K.
,
Lee
,
C. S.
, and
Park
,
S.
,
2016
, “
Spray Characterization, Combustion, Noise and Vibrations Investigations of Jatropha Biodiesel Fuelled Genset Engine
,”
Fuel
,
185
, pp.
410
420
.
You do not currently have access to this content.