Abstract

Kerogen in oil shale plays a crucial part in the shale oil and gas generation. Here, photoconductive measurement was used to evaluate the decomposition process of Huadian oil shale. The photoconductivity of the semi-coke is a clear indicator of different pyrolysis stages, including moisture evaporation, primary pyrolysis of kerogen, decomposition of asphalt monomer, and mineral decomposition. Furthermore, the distribution model of electrical resistance (R) and photoconductance (ΔI) for Huadian oil shale is plotted, indicating an inverse proportion between R and ΔI. We believe that the photoconductive measurement will be a valuable means for the nondestructive characterization of oil shale pyrolysis, which is helpful to optimize the comprehensive utilization of this unconventional resource.

References

1.
Goth
,
K.
,
Leeuw
,
J. W. D.
,
W
,
P. Ü.
, and
Tegelaar
,
E. W.
,
1988
, “
Origin of Messel Oil Shale Kerogen
,”
Nature
,
336
(
6201
), pp.
759
761
.
2.
Schelly
,
C.
,
2016
, “
Unconventional Oil and Gas: The Role of Politics and Proximity
,”
Nat. Energy
,
1
(
10
), p.
16163
.
3.
Niu
,
M.
,
Wang
,
S.
,
Han
,
X.
, and
Jiang
,
X.
,
2013
, “
Yield and Characteristics of Shale Oil From the Retorting of Oil Shale and Fine Oil-Shale Ash Mixtures
,”
Appl. Energy
,
111
, pp.
234
239
.
4.
Chen
,
C.
,
Gao
,
S.
,
Sun
,
Y. H.
,
Guo
,
W.
, and
Li
,
Q.
,
2017
, “
Research on Underground Dynamic Fluid Pressure Balance in the Process of Oil Shale In-Situ Fracturing-Nitrogen Injection Exploitation
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032908
.
5.
Saif
,
T.
,
Lin
,
Q.
,
Butcher
,
A. R.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2017
, “
Multi-Scale Multi-Dimensional Microstructure Imaging of Oil Shale Pyrolysis Using X-Ray Micro-Tomography, Automated Ultra-High Resolution SEM, MAPS Mineralogy and FIB-SEM
,”
Appl. Energy
,
202
, pp.
628
647
.
6.
Tao
,
H.
,
Pang
,
X.
,
Shu
,
J.
,
Wang
,
Q.
,
Zheng
,
X.
,
Ding
,
X.
,
Zhao
,
Y.
,
Zhu
,
C.
, and
Li
,
H.
,
2018
, “
Oil Content Evaluation of Lacustrine Organic-Rich Shale With Strong Heterogeneity: A Case Study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China
,”
Fuel
,
221
, pp.
196
205
.
7.
Yang
,
J.
,
Hatcherian
,
J.
,
Hackley
,
P. C.
, and
Pomerantz
,
A. E.
,
2017
, “
Nanoscale Geochemical and Geomechanical Characterization of Organic Matter in Shale
,”
Nat. Commun.
,
8
(
1
), p.
2179
.
8.
Zhan
,
H. L.
,
Ren
,
Z. W.
,
Chen
,
R.
,
Zhao
,
K.
,
Han
,
G. H.
,
Miao
,
X. Y.
, and
Yue
,
W. Z.
,
2020
, “
A New Approach for Desert Reservoir Exploration: Terahertz Prospecting
,”
IEEE Trans. THz Sci. Technol.
,
10
(
1
), pp.
68
73
.
9.
Miao
,
X.
,
Zhan
,
H.
, and
Zhao
,
K.
,
2017
, “
Application of THz Technology in Oil and Gas Optics
,”
Sci. China Phys. Mech. Astron.
,
60
(
2
), p.
024231
.
10.
Scales
,
J. A.
, and
Batzle
,
M.
,
2006
, “
Millimeter Wave Analysis of the Dielectric Properties of Oil Shales
,”
Appl. Phys. Lett.
,
89
(
2
), p.
024102
.
11.
Miao
,
X. Y.
,
Zhan
,
H. L.
, and
Zhao
,
K.
,
2016
, “
Oil Yield Characterization by Anisotropy in Optical Parameters of the Oil Shale
,”
Energy Fuels
,
30
(
12
), pp.
10365
10370
.
12.
Miao
,
X. Y.
,
Chen
,
M. X.
,
Li
,
Y. Z.
,
Zhan
,
H. L.
,
Zhao
,
K.
, and
Yue
,
W. Z.
,
2020
, “
Simultaneous Determination of Organic Distribution and Content in Oil Shale by Terahertz Imaging
,”
Energy Fuels
,
34
(
2
), pp.
1664
1668
.
13.
Miao
,
X. Y.
,
Chen
,
M. X.
,
Zhan
,
H. L.
,
Zhao
,
K.
, and
Yue
,
W. Z.
,
2021
, “
Evaluating the Hydrocarbon Yield of Oil Shale Using Electrically Tunable Terahertz Wave
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013004
.
14.
Zhan
,
H. L.
,
Chen
,
M.
,
Zhao
,
K.
,
Li
,
Y.
,
Miao
,
X.
,
Ye
,
H.
,
Ma
,
Y.
,
Hao
,
S.
,
Li
,
H.
, and
Yue
,
W.
,
2018
, “
The Mechanism of the Terahertz Spectroscopy for Oil Shale Detection
,”
Energy
,
161
, pp.
46
51
.
15.
Chen
,
M.
,
Zhu
,
J.
,
Zhan
,
H.
,
Meng
,
Z.
,
Zhang
,
S.
,
Chen
,
R.
,
Zhao
,
K.
, and
Yue
,
W.
,
2019
, “
Direct Detection of Oil Shale Yields: A Laser-Induced Voltage Investigation
,”
Energy Fuels
,
33
(
2
), pp.
1069
1073
.
16.
Chen
,
M. X.
,
Zhan
,
H. L.
,
Chen
,
R.
,
Meng
,
Z.
,
Zhang
,
S.
,
Zhao
,
K.
,
Zhu
,
J.
, and
Yue
,
W.
,
2019
, “
Laser-Induced Voltage of Oil Shale During Retorting
,”
Energy Fuels
,
33
(
11
), pp.
10533
10536
.
17.
Zhan
,
H. L.
,
Yang
,
Q.
,
Qin
,
F.
,
Meng
,
Z.
,
Chen
,
R.
,
Miao
,
X.
,
Zhao
,
K.
, and
Yue
,
W.
,
2022
, “
Comprehensive Preparation and Multiscale Characterization of Kerogen in Oil Shale
,”
Energy
,
252
, pp.
124005
.
18.
Zhan
,
H. L.
,
Wang
,
Y.
,
Chen
,
M.
,
Chen
,
R.
,
Zhao
,
K.
, and
Yue
,
W.
,
2020
, “
An Optical Mechanism for Detecting the Whole Pyrolysis Process of Oil Shale
,”
Energy
,
190
, pp.
116343
.
19.
Zhan
,
H. L.
,
Qin
,
F.
,
Chen
,
S.
,
Chen
,
R.
,
Meng
,
Z.
,
Miao
,
X.
, and
Zhao
,
K.
,
2022
, “
Two-Step Pyrolysis Degradation Mechanism of Oil Shale Through Comprehensive Analysis of Pyrolysis Semi-Cokes and Pyrolytic Gases
,”
Energy
,
241
, p.
122871
.
20.
Li
,
Y.
,
Miao
,
X.
,
Zhan
,
H.
,
Wang
,
W.
,
Bao
,
R.
,
Leng
,
W.
, and
Zhao
,
K.
,
2018
, “
Evaluating Oil Potential in Shale Formations Using Terahertz Time-Domain Spectroscopy
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
034501
.
21.
Miao
,
X.
,
Zhu
,
J.
,
Li
,
Y.
,
Zhao
,
K.
,
Zhan
,
H.
, and
Yue
,
W.
,
2018
, “
Ultraviolet Laser-Induced Voltage in Anisotropic Shale
,”
J. Phys. D Appl. Phys.
,
51
(
4
), p.
045503
.
22.
Zhang
,
S.
,
Miao
,
X.
,
Peng
,
X.
,
Lu
,
W.
,
Liu
,
X.
,
Zhan
,
H.
,
Liang
,
H.
, and
Zhao
,
K.
,
2020
, “
Applying a 532 nm Laser to Reduce the Viscosity of Crude Oil
,”
Energy Fuels
,
34
(
8
), pp.
9509
9514
.
23.
Liu
,
X.
,
Miao
,
X.
,
Zhu
,
M.
,
Peng
,
X.
,
Lu
,
W.
,
Zhang
,
S.
,
Zhan
,
H.
,
Yue
,
W.
, and
Zhao
,
K.
,
2021
, “
Mechanism of the Laser-Induced Voltage Generated in Oil Shale Under the Irradiation of a 532 nm Laser
,”
Energy Fuels
,
35
(
2
), pp.
1398
1403
.
You do not currently have access to this content.