Abstract

With the continuous exploration and development of oil wells, we must pay attention to the risk of leakage from abandoned wells. Therefore, it is necessary to plug and abandon the abandoned well. However, there are many limitations in the traditional plugging and abandonment (P&A) operation, for example, cement's bearing capacity, the cement's corrosion resistance, the problem of the extended operation time, and high cost. To overcome the aforementioned issues, a thermite plugging and abandonment (TP&A) technology is proposed in this field. The technology uses the aluminothermic reaction to melt the original or set materials for P&A operation. To promote the phase transformation of more materials in the well to form a plug with good plugging performance, the temperature distribution in the TP&A system was optimized. Based on the heat conduction theory and successive overrelaxation iterative method, a heat conduction model based on the temperature release law of aluminothermic reaction is established and solved. The temperature change law under different combinations of the downhole environment is studied. The optimized model can maintain the high-efficiency transfer of energy, fluid–structure interaction, and the interaction between fluids. The material after the phase change can be cooled to form a plug with good plugging performance.

References

1.
Achang
,
M.
, and
Radonjic
,
L. Y. A. M.
,
2020
, “
A Review of Past, Present, and Future Technologies for Permanent Plugging and Abandonment of Wellbores and Restoration of Subsurface Geologic Barriers
,”
Environ. Eng. Sci.
,
37
(
6
), pp.
395
408
.
2.
Ugarte
,
E. R.
, and
Salehi
,
S.
,
2022
, “
A Review on Well Integrity Issues for Underground Hydrogen Storage
,”
ASME J. Energy Resour. Technol
,
144
(
4
), p.
042001
.
3.
Harleman
,
M.
,
Weber
,
J. G.
, and
Berkowitz
,
D.
,
2022
, “
Environmental Hazards and Local Investment: A Half-Century of Evidence From Abandoned Oil and Gas Wells
,”
J. Assoc. Environ. Resour. Econ
,
9
(
4
), pp.
721
753
.
4.
Farhad Aslani Sup
,
S.C.C.C.
,
Sup
,
Y.Z.S.
,
Sup
,
D.M.S.
,
Sup
,
L.C.V.S.
, and
Sup
,
N.M.S.
,
2022
, “
Additive and Alternative Materials to Cement for Well Plugging and Abandonment: A State-of-the-Art Review
,”
J. Pet. Sci. Eng.
,
215
(
PB
).
5.
Vielstädte
,
L.
,
Karstens
,
J.
,
Haeckel
,
M.
,
Schmidt
,
M.
,
Linke
,
P.
,
Reimann
,
S.
,
Liebetrau
,
V.
,
McGinnis
,
D. F.
, and
Wallmann
,
K.
,
2015
, “
Quantification of Methane Emissions at Abandoned Gas Wells in the Central North Sea (Article)
,”
Mar. Pet. Geol.
,
68
, pp.
848
860
.
6.
Skorpa
,
R.
, and
Vrålstad
,
T.
,
2022
, “
Leakages Through Radial Cracks in Cement Sheaths: Effect of Geometry, Viscosity, and Aperture
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
013006
.
7.
El Hachem
,
K.
, and
Kang
,
M.
,
2022
, “
Methane and Hydrogen Sulfide Emissions From Abandoned, Active, and Marginally Producing Oil and Gas Wells in Ontario, Canada
,”
Sci. Total Environ.
,
823
, p. 153491.
8.
Smith
,
I.
, and
Shu
,
D.
,
2013
, “
A Strategic Shift in Well Abandonment Services
,”
Oil and Gas
,
2
(
1
), pp.
19
21
.
9.
Api
,
RP
,
2013
, “10B-2: Recommended Practice for Testing Well Cement,”
Recommended Pratice for Testing Well Cements
,
American Petroleum Institute
,
Washington, DC
.
10.
Davison
,
J. M.
,
Salehabadi
,
M.
,
De Gennaro
,
S.
,
Wilkinson
,
D.
,
Hogg
,
H.
,
Hunter
,
C.
, and
Schutjens
,
P.
,
2017
, “
Plugging and Abandonment of Oil and Gas Wells: A Geomechanics Perspective
,”
51st U.S. Rock Mechanics/Geomechanics Symposium
,
San Francisco, CA
,
June 25
,
p. 0451
.
11.
Santos
,
L.
, and
Taleghani
,
A. D.
,
2022
, “
On Quantitative Assessment of Effective Cement Bonding to Guarantee Wellbore Integrity
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
013001
.
12.
Schulte
,
R.
,
2002
, “Plug and Abandonment Final Edited,”
Cements Soultions Plug and Abandonment
,
RMOTC
,
USA
.
13.
Muhammad
,
A.
, and
Kamarza
,
M.
,
2018
, “
Study of Microfine Cement use on Squeeze Cementing Operations in Plug and Abandonment Work
,”
E3S Web of Conferences
,
67
, p.
03001
.
14.
Ahmed
,
S.
, and
Salehi
,
S.
,
2021
, “
Failure Mechanisms of the Wellbore Mechanical Barrier Systems: Implications for Well Integrity
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073007
.
15.
Gasda
,
S. E.
,
Bachu
,
S.
, and
Celia
,
M. A.
,
2004
, “
Spatial Characterization of the Location of Potentially Leaky Wells Pene Trating a Deep Saline Aquifer in a Mature Sedimentary Basin
,”
Environ. Geol.
,
46
(
6–7
), pp.
707
720
.
16.
Beltrán-Jiménez
,
K.
,
Gardner
,
D.
,
Kragset
,
S.
,
Gebremariam
,
K. F.
,
Reales
,
O. A.
,
Minde
,
M. W.
,
de Souza
,
M. I.
,
Aasen
,
J. A.
,
Skadsem
,
H. J.
, and
Delabroy
,
L.
,
2022
, “
Cement Properties Characterization From a Section Retrieved From an oil Production Well After 33 Years of Downhole Exposure
,”
J. Pet. Sci. Eng.
,
208
(
PA
), p.
109334
.
17.
Boukhelifa
,
L.
,
Moroni
,
N.
,
James
,
S. G.
,
Le Roy-Delage
,
S.
,
Thiercelin
,
M. J.
, and
Lemaire
,
G.
,
2005
, “
Evaluation of Cement Systems for Oil and Gas Well Zonal Isolation in a Full-Scale Annular Geometry
,”
SPE Drill. Complet.
,
20
(
01
), pp.
44
53
, Paper No. SPE-87195-PA.
18.
Bois
,
A.-P.
,
Garnier
,
A.
,
Rodot
,
F.
,
Sain-Marc
,
J.
, and
Aimard
,
N.
,
2011
, “
How to Prevent Loss of Zonal Isolation Through a Comprehensive Analysis of Micro Annulus Formation
,”
SPE Drill. Complet.
,
26
(
01
), pp.
13
31
.
19.
Skadsem
,
H. J.
,
2022
, “
Fluid Migration Characterization of Full-Scale Annulus Cement Sections Using Pressure-Pulse-Decay Measurements
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073005
.
20.
Carrol
,
S.
,
Carey
,
J. W.
,
Dzombak
,
D.
,
Huerta
,
N. J.
,
Li
,
L.
,
Richard
,
T.
,
Um
,
W.
,
Walsh
,
S. D. C.
, and
Zhang
,
L.
,
2016
, “
Review: Role of Chemistry, Mechanics, and Transport on Well Integrity in CO2 Storage Environments
,”
Int. J. Greenh. Gas Control.
,
49
(
15
), pp.
149
160
.
21.
Kaiser
,
M. K. M. J.
, and
Liu
,
M. L. M.
,
2014
, “
Decommissioning Cost Estimation in the Deepwater U.S. Gulf of Mexico—Fixed Platform Sand Compliant Towers
,”
Mar. Struct.
,
27
(
1
), pp.
1
32
.
22.
Mortensen
,
F. M.
,
2016
, “
A New P&A Technology for Setting the Permanent Barriers
,”
Master's thesis
,
University of Stavanger
,
Norway
.
23.
Stein
,
A.
,
2018
, “
Verification of Barriers in a Suspension or Abandonment Phase
,”
Offshore Technology Conference Asia
,
Kuala Lumpur, Malaysia
,
Mar. 20–23
, Paper No. OTC-28218.
24.
Magalhães
,
E. D. S. A.
,
2020
, “
A Thermal Study of a New Oil Well Plugging & Abandonment Operation
,”
Int. J. Therm. Sci.
,
155
(
C
), p.
106421
.
25.
de Andrade
,
G. S.
,
de Lemos
,
M. J.
, and
Colombo
,
D.
,
2021
, “
A New Hybrid Analytical/Numerical Method for Transient Heat Conduction in Composite Hollow Cylinders Applied to Plug and Abandonment of Oil Wells
,”
Int. J. Therm. Sci.
,
168
(
1
), p.
106981
.
26.
Pena
,
F. J.
, and
de Lemos
,
M. J.
,
2021
, “
Unsteady Heat Conduction With Phase Change Applied to a Novel Thermal Plug and Abandonment Process
,”
Int. J. Therm. Sci.
,
170
(
59
), p.
107155
.
27.
de Souza
,
K. M. S. S.
,
de Lemos
,
M. J. S. S.
, and
Kawachi
,
E. Y. S. S.
,
2022
, “
Thermodynamics of Thermite Reactions for a New Thermal Plug and Abandonment Process
,”
Contin. Mech. Thermodyn.
,
34
(
1
), pp.
259
271
.
28.
de Souza
,
K. M.
, and
de Lemos
,
M. J. S.
,
2021
, “
Detailed Numerical Modeling and Simulation of Fe2O3−Al Thermite Reaction
,”
Propellants, Explos., Pyrotech.
,
46
(
5
), pp.
806
824
.
29.
Anderson
,
A.
,
Al-Mohaimeed
,
A. M.
,
Elshikh
,
M. S.
,
Praveenkumar
,
T. R.
, and
Sekar
,
M.
,
2021
, “
Exergy and Energy Analysis of α-Fe2O3-Doped Al2O3 Nanocatalyst-Based Biodiesel Blends—Performance and Emission Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120902
.
30.
Mei
,
J.
,
Halldearn
,
R. D.
, and
Xiao
,
P.
,
1999
, “
Mechanisms of the Aluminum-Iron Oxide Thermite Reaction
,”
Scr. Mater
,
41
(
5
), pp.
541
548
.
31.
Wang
,
L. L.
,
Munir
,
Z. A.
, and
Maximov
,
Y. M.
,
1993
, “
Thermite Reactions: Their Utilization in the Synthesis and Processing of Materials
,”
J. Mater. Sci.
,
28
(
14
), pp.
3693
3708
.
32.
Rouboa
,
A.
,
Monteiro
,
E.
, and
de Almeida
,
R.
,
2009
, “
Finite Volume Method Analysis of Heat Transfer Problem Using Adapted Strongly Implicit Procedure
,”
J. Mech. Sci. Technol.
,
23
(
6
), pp.
1553
1562
.
33.
Bonacina
,
C.
,
Comini
,
G.
, and
Fasano
,
A.
,
1973
, “
Numerical Solution of Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
16
(
10
), pp.
1825
1832
.
34.
Rohmer
,
J.
,
Knittel
,
D.
,
Sturtzer
,
G.
,
Flieller
,
D.
, and
Renaud
,
J.
,
2018
, “
A Thermal Analysis in Laser Welding Using Inverse Problems
,”
Int. Commun. Heat Mass Transfer
,
92
, pp.
112
119
.
35.
Voller
,
V. R.
, and
Shadabi
,
L.
,
1984
, “
Enthalpy Methods for Tracking a Phase Change Boundary in Two Dimensions
,”
Int. Commun. Heat Mass Transfer
,
11
(
3
), pp.
239
249
.
You do not currently have access to this content.