Abstract

In this paper, we advocate the use of multispecies transport model coupled to global mechanisms instead of using detailed mechanisms, which are still not yet computational affordable for the majority of the research groups in Africa. The open-source sofware openFOAM® is used as the calculation platform. The obtained algorithm is validated by comparing its simulation results to the full Gas Research Institut (GRI)-3.0 mechanism-based simulations of Charest et al. (2014, “Numerical and Experimental Study of Soot Formation in Laminar Diffusion Flames Burning Simulated Biogas Fuels at Elevated Pressures,” Combust. Flame, 161, pp. 2678–2691) with quite satisfactory agreement for methane flames diluted with CO2. The new code is then used to investigate the axial flame temperature of locally produced biogases from pig slurry and cow dung respectively named BG L1, BG L2, BG B1, and BG B2. These biogases differ from each other in their composition. Methane proportion in the mixture ranges from 46% to 52%.

References

1.
IEA
,
2012
, “
World Energy Outlook 2010
,” Fatih Birol, Paris, https://www.iea.org/reports/world-energy-outlook-2010, Accessed November 11, 2010.
2.
Gahleitner
,
G.
,
2013
, “
Hydrogen From Renewable Electricity: An International Review of Power-to-Gas Pilot Plants for Stationary Applications
,”
Int. J. Hydrogen Energy
,
38
(
115
), pp.
2039
2061
.
3.
Nigam
,
P.
, and
Singh
,
A.
,
2011
, “
Production of Liquid Biofuels From Renewable Resources
,”
Prog. Energy Combust. Sci.
,
37
(
111
), pp.
52
68
.
4.
Bhatti
,
H.
,
Hanif
,
M.
,
Qasim
,
M.
, and
ur Rehman
,
A.
,
2008
, “
Biodisel Production From Waste Tallow
,”
Fuel
,
87
(
13–14
), pp.
2961
2966
.
5.
Ju
,
Y.
,
Masuya
,
G.
, and
Ronney
,
P.
,
1998
, “
Effects of Radiative Emission and Absorption on the Propagation and Extinction of Premixed Gas Flames
,”
Symp. (Int.) Combust.
,
27
(
112
), pp.
2619
2626
.
6.
Ruan
,
J.
,
Kobayashi
,
H.
,
Nioka
,
T.
, and
Ju
,
Y.
,
2001
, “
Combined Effects of Nongray Radiation and Pressure on Premixed CH4/O2/CO2 Flames
,”
Combust. Flame
,
124
(
111
), pp.
225
230
.
7.
Ghenia
,
C.
, and
Janajreh
,
I.
,
2015
, “
Combustion of Renewal Biogas Fuels
,”
J. Energy Power Eng.
,
9
, pp.
831
843
.
8.
Charest
,
M.
,
Clinton
,
G.
, and
Gülder
,
O.
,
2011
, “
Effects of Gravity and Pressure on Laminar Coflow Methane–Air Diffusion Flames at Pressures From 1 to 60 Atmospheres
,”
Combust. Flame
,
158
(
5
), pp.
860
875
.
9.
Ehsan
,
S.
,
Bagheri
,
G.
, and
Wahid
,
M. K.
,
2015
, “
Combustion of Biogas Released From Palm Oil Mill Effluent (POME) and the Effect of Hydrogen Enrichment on the Characteristics of the Biogas Flame
,”
Combust. Flame
,
2015
, p.
12
.
10.
Noume
,
H. C.
,
Bomba
,
V.
, and
Obounou
,
M.
,
2020
, “
Numerical Investigation of a Turbulent Jet Flame With a Compact Skeletal Mechanism
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032206
.
11.
Awakem
,
D.
,
Obounou
,
M.
, and
Noume
,
H. C.
,
2019
, “
Application of the Computational Singular Perturbation Method to a Turbulent Diffusion CH4/H2/N2 Flame Using Openfoam
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042201
12.
Gnentedem
,
C.
,
Awakem
,
D.
,
Obounou
,
M.
, and
Njomo
,
D.
,
2020
, “
Application of a Reduced Mechanism by Computational Singular Perturbation Method to the Calculation of the Ignition Delays of a Turbulence Diffusion Flame CH4/H2/N2
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062302
.
13.
EDF R and D
, “
Code Saturne 3.0 Theory and Programmer's Guide
,” Technical Report, http://www.code-saturne.org
14.
Novaresio
,
V.
,
Garcia-Camprubi
,
M.
,
Izquierdo
,
S.
,
Asinari
,
P.
, and
Fueyo
,
N.
,
2011
, “
An Open-Source Library for the Numerical Modeling of Mass-Transfer in Solid Oxide Fuel Cells
,”
Comput. Phys. Commun.
,
183
(
1
), pp.
125
146
.
15.
Gimeno-Escobedo
,
E.
,
Cubero
,
A.
,
Ochoa
,
J. S.
, and
Fueyo
,
N.
,
2019
, “
A Reduced Mechanism for the Prediction of Methane–Hydrogen Flames in Cooktop Burners
,”
Int. J. Hydrogen Energy
,
44
(
49
), pp.
27123
27140
.
16.
Charest
,
M. R. J.
,
Guelder
,
O. L.
, and
Groth
,
C. P. T.
,
2014
, “
Numerical and Experimental Study of Soot Formation in Laminar Diffusion Flames Burning Simulated Biogas Fuels at Elevated Pressures
,”
Combust. Flame
,
161
(
10
), pp.
2678
2691
.
17.
OpenCFD Ltd
,
OpenFOAM, 2015
, https://openfoam.org/version/2-4-0/, Accessed July 5, 2016.
18.
FoamCFD
,
Foamcfd, 2010
, http://foamcfd.org, Accessed December 5, 2021.
19.
Piquet
,
J.
,
2001
,
Turbulent Flows: Models and Physics
,
Springer Science & Business Media
.
20.
Williams
,
F. A.
,
Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems
, 2nd ed.
(Combustion Science and Engineering), Benjamin-Cummings Publishing Company
,
1985
. libgen.li/file.php?md5=8a5db4fe4b98611dbd7ab8ce5014d59a, 1985.
21.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
,
Berlin, New York
.
22.
Rashidi
,
A.
,
2011
, “
CFD Simulation of Biomass Gasification Using Detailed Chemistry
,” Ph.D. thesis.
23.
Li
,
T.
,
Pan
,
J.
,
Kong
,
F.
,
Xu
,
B.
, and
Wang
,
X.
,
2020
, “
A Quasi-Direct Numerical Simulation Solver for Compressible Reacting Flows
,”
Comput. Fluids
,
213
, p.
104718
.
24.
Sutherland
,
W.
,
1893
, “
The Viscosity of Gases and Molecular Force
,”
Philos. Mag. Ser. 5
,
36
(
5
), pp.
507
531
.
25.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill Inc.
,
New York
.
26.
Fick
,
A.
,
1855
, “
Ueber Diffusion
,”
Ann. Phys.
,
170
(
1
), pp.
59
86
.
27.
Cunningham
,
R. E.
, and
Williams
,
R. J. J.
,
1980
,
Diffusion in Gases and Porous Media
,
Plenum Press
,
New York
.
28.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
29.
Toor
,
H. L.
,
Seshadri
,
C. V.
, and
Arnold
,
K. R.
,
1965
, “
Diffusion and Mass Transfer in Multicomponent Mixtures of Ideal Gases
,”
AIChE J.
,
11
(
4
), p.
11
. libgen.li/file.php?md5=8ce0685e1324a93399035951f0bd7b23. 10.1002/aic.690110437
30.
Wesseling
,
J.
, and
Krishna
,
R.
,
2006
, “
Mass Transfer in Multicomponent Mixtures
.” libgen.li/file.php?md5=8c027319243bea0ce6002d50f7c4cdaf.
31.
Mantel
,
T.
,
Egolfopoulos
,
F. N.
, and
Bowman
,
C. T.
,
1996
, “
A New Methodology to Determine Kinetic Parameters for One- and Two-Step Chemical Models
,”
Center for Turbulent Research
,
6
, pp.
149
165
. 19970014661
32.
Luca
,
G. D.
,
2021
, “
Development of a Dynamic Les Model for Turbulent Diffusion Flames
,” Ph.D. thesis,
Paris-Sarclay University
,
Paris
.
33.
Jones
,
W.
, and
Lindstedt
,
P.
,
1988
, “
Global Reaction Schemes for Hydrocarbon Combustion
,”
Combust. Flame
,
73
(
3
), pp.
233
249
.
34.
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Ranzi
,
E.
,
Candusso
,
C.
, and
Tolazzi
,
D.
,
2009
, “
Simplified Kinetic Schemes for Oxy-Fuel Combustion
,”
First International Conference on Sustainable Fossil Fuels for Future Energy – S4FE 2009.
35.
OpenFOAM
, and
The OpenFOAM Foundation
,
2014
,
OpenFOAM Version 2.3.0
.
36.
Smith
,
G.
,
Golden
,
D.
,
Frenklach
,
M.
,
Moriarty
,
N.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C.
,
Hanson
,
R.
,
Song
,
S.
,
Gardiner, Jr.
,
W.
,
Lissianski
,
V.
, and
Qin
,
Z.
,
GRI-Mech 3.0
. http://www.me.berkeley.edu/gri˙mech/.
37.
Mouangue
,
R. M.
,
2011
, “
Contribution á la modelisation de la combustion turbulente non-premelangee avec prise en compte de l’auto-allumage
,” THese de Ph.D.,
Université de Yaoundé 1
,
Yaounde
.
38.
Sosso Mayi
,
O. T.
,
Stéphane
,
K.
,
Ndamé
,
M.
,
Akong
,
M.
, and
Agbébavi
,
J.
,
2014
, “
Numerical Simulation of Premixed Methane/Air Micro Flame: Effects of Simplified One Step Chemical Kinetic Mechanisms on the Flame Stability
,”
Appl. Therm. Eng.
,
73
, pp.
567
576
.
You do not currently have access to this content.