Abstract

Methane explosion is one of the major hazards in the mechanical industry. In this paper, a series of methane/air premixed combustion experiments were carried out to study the influence of blockage ratio on flame propagation. The blocking ratio (BR) is referred as the cross-sectional area of occlusion divided by the total area. Flame shape and pressure response were measured and analyzed. The results showed that five typical stages were experienced for all configurations except for BR = 0.999, particularly, a diamond-shaped flame and a mushroom-shaped flame front were observed for some lower BRs. The largest length of jet flames was selected to characterize flame–obstacle interaction rose smoothly until BR = 0.9 and then declines rapidly. The flame evolution process was simulated by a power-law flame wrinkling model. Flame behaviors and pressure dynamics for each configuration were investigated, and the maximum flame speed, explosion pressure, and growth rate coincide exactly with the largest length of jet flames in trend. It can be seen that BR was of great significance to flame propagation and BR = 0.9 was a limit or a watershed. In addition, the pressure growth rate was positively correlated with the flame tip speed.

References

1.
Ibrahim
,
S. S.
,
Hargrave
,
G. K.
, and
Williams
,
T. C.
,
2001
, “
Experimental Investigation of Flame/Solid Interactions in Turbulent Premixed Combustion
,”
Exp. Therm. Fluid Sci.
,
24
(
3–4
), pp.
99
106
.
2.
Gagnon
,
L.
,
Carey
,
V. P.
, and
Fernandez-Pello
,
C.
,
2021
, “
Using an Artificial Neural Network to Predict Flame Spread Across Electrical Wires
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092305
.
3.
Hoseinzadeh
,
S.
, and
Stephan Heyns
,
P.
,
2021
, “
Advanced Energy, Exergy, and Environmental (3E) Analyses and Optimization of a Coal-Fired 400 MW Thermal Power Plant
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082106
.
4.
Li
,
L.
,
Guo
,
X.
,
Lu
,
R.
,
Chen
,
P.
, and
Shi
,
C.
,
2022
, “
Experimental Study on Horizontal Fire Spread Characteristics of Transformer Oil
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012107
.
5.
Mendes
,
R. C. F.
,
Macias
,
M. M.
,
Oliveira
,
T. F.
, and
Brasil
,
A. C. P.
,
2021
, “
A Computational Fluid Dynamics Investigation on the Axial Induction Factor of a Small Horizontal Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
041301
.
6.
Mohamed
,
F. M.
,
Eljack
,
F. T.
,
Ahmed
,
S. F.
, and
Ghani
,
S. A.
,
2022
, “
Investigating the Potential of Recycling Flare-Source Hydrocarbon Gases in an Industrial Burner
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022309
.
7.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.
8.
Sun
,
W.
,
Zhong
,
W.
,
Zhang
,
J.
, and
Echekki
,
T.
,
2021
, “
Large Eddy Simulation on the Effects of Coal Particles Size on Turbulent Combustion Characteristics and NOx Formation Inside a Corner-Fired Furnace
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082302
.
9.
Wei
,
S.
,
Wang
,
J.
,
Song
,
H.
, and
Zhou
,
X.
,
2022
, “
Technical and Economic Evaluation on the Integrated Heating System With Coupled Heat Pump and Backpressure Turbine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
035001
.
10.
Zhang
,
Y.
,
Wang
,
H.
,
Du
,
W.
,
Niu
,
K.
, and
Wei
,
X.
,
2021
, “
Temperature-Programmed Oxidation Experiments on Typical Bituminous Coal Under Inert Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032102
.
11.
Ziółkowski
,
P.
,
Szewczuk-Krypa
,
N.
,
Butterweck
,
A.
,
Stajnke
,
M.
,
Głuch
,
S.
,
Drosińska-Komor
,
M.
,
Milewska
,
A.
, and
Głuch
,
J.
,
2022
, “
Comprehensive Thermodynamic Analysis of Steam Storage in a Steam Cycle in a Different Regime of Work: A Zero-Dimensional and Three-Dimensional Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
050905
.
12.
Zipf
,
R. K.
,
Gamezo
,
V. N.
,
Mohamed
,
K. M.
,
Oran
,
E. S.
, and
Kessler
,
D. A.
,
2014
, “
Deflagration-to-Detonation Transition in Natural Gas–Air Mixtures
,”
Combust. Flame
,
161
(
8
), pp.
2165
2176
.
13.
Park
,
D.
,
Green
,
A.
,
Lee
,
Y.
, and
Chen
,
Y.
,
2007
, “
Experimental Studies on Interactions Between a Freely Propagating Flame and Single Obstacles in a Rectangular Confinement
,”
Combust. Flame
,
150
(
1–2
), pp.
27
39
.
14.
Johansen
,
C.
, and
Ciccarelli
,
G.
,
2013
, “
Modeling the Initial Flame Acceleration in an Obstructed Channel Using Large Eddy Simulation
,”
J. Loss Prevent. Process Ind.
,
26
(
4
), pp.
571
585
.
15.
Di Sarli
,
V.
,
Di Benedetto
,
A.
, and
Russo
,
G.
,
2010
, “
Sub-Grid Scale Combustion Models for Large Eddy Simulation of Unsteady Premixed Flame Propagation Around Obstacles
,”
J. Hazard. Mater.
,
180
(
1–3
), pp.
71
78
.
16.
Kessler
,
D. A.
,
Gamezo
,
V. N.
, and
Oran
,
E. S.
,
2010
, “
Simulations of Flame Acceleration and Deflagration-to-Detonation Transitions in Methane–Air Systems
,”
Combust. Flame
,
157
(
11
), pp.
2063
2077
.
17.
Ciccarelli
,
G.
,
Fowler
,
C. J.
, and
Bardon
,
M.
,
2005
, “
Effect of Obstacle Size and Spacing on the Initial Stage of Flame Acceleration in a Rough Tube
,”
Shock Waves
,
14
(
3
), pp.
161
166
.
18.
Hall
,
R.
,
Masri
,
A.
,
Yaroshchyk
,
P.
, and
Ibrahim
,
S.
,
2009
, “
Effects of Position and Frequency of Obstacles on Turbulent Premixed Propagating Flames
,”
Combust. Flame
,
156
(
2
), pp.
439
446
.
19.
Johansen
,
C.
, and
Ciccarelli
,
G.
,
2009
, “
Visualization of the Unburned Gas Flow Field Ahead of an Accelerating Flame in an Obstructed Square Channel
,”
Combust. Flame
,
156
(
2
), pp.
405
416
.
20.
Di Sarli
,
V.
,
Di Benedetto
,
A.
, and
Russo
,
G.
,
2009
, “
Using Large Eddy Simulation for Understanding Vented Gas Explosions in the Presence of Obstacles
,”
J. Hazard. Mater.
,
169
(
1–3
), pp.
435
442
.
21.
Alharbi
,
A.
,
Masri
,
A. R.
, and
Ibrahim
,
S. S.
,
2014
, “
Turbulent Premixed Flames of CNG, LPG, and H2 Propagating Past Repeated Obstacles
,”
Exp. Therm. Fluid Sci.
,
56
, pp.
2
8
.
22.
Chen
,
P.
,
Guo
,
S.
,
Li
,
Y.
, and
Zhang
,
Y.
,
2016
, “
Experimental and LES Investigation of Premixed Methane/Air Flame Propagating in a Tube With a Thin Obstacle
,”
Combust. Theory Modell.
,
21
(
2
), pp.
274
292
.
23.
Chen
,
P.
,
Li
,
Y.
,
Huang
,
F.
,
Guo
,
S.
, and
Liu
,
X.
,
2016
, “
Experimental and LES Investigation of Premixed Methane/Air Flame Propagating in a Chamber for Three Obstacle BR Configurations
,”
J. Loss Prevent. Process Ind.
,
41
, pp.
48
54
.
24.
Wang
,
M.
,
Li
,
P.
, and
Wang
,
F.
,
2020
, “
Dependence of the Blowout Limit on Flow Structure, Heat Transfer, and Pressure Loss in a Bluff-Body Micro-Combustor
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19912
19925
.
25.
Kim
,
J.
,
Satija
,
A.
,
Lucht
,
R. P.
, and
Gore
,
J. P.
,
2020
, “
Effects of Turbulent Flow Regime on Perforated Plate Stabilized Piloted Lean Premixed Flames
,”
Combust. Flame
,
211
, pp.
158
172
.
26.
Yang
,
K.
,
Chen
,
K.
,
Ji
,
H.
,
Xing
,
Z.
,
Hao
,
Y.
,
Wu
,
J.
, and
Jiang
,
J.
,
2021
, “
Experimental Study on the Effect of Modified Attapulgite Powder With Different Outlet Blockage Ratios on Methane-Air Explosion
,”
Energy
,
237
, pp.
1
11
.
27.
Gamezo
,
V. N.
,
Bachman
,
C. L.
, and
Oran
,
E. S.
,
2021
, “
Flame Acceleration and DDT in Large-Scale Obstructed Channels Filled With Methane-Air Mixtures
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3521
3528
.
28.
Zhu
,
Y.
,
Wang
,
D.
,
Shao
,
Z.
,
Zhu
,
X.
,
Xu
,
C.
, and
Zhang
,
Y.
,
2020
, “
Investigation on the Overpressure of Methane-Air Mixture Gas Explosions in Straight Large-Scale Tunnels
,”
Process Saf. Environ. Prot.
,
135
, pp.
101
112
.
29.
Wang
,
J.
,
Luo
,
F.
,
Guo
,
J.
, and
Zhang
,
S.
,
2020
, “
Structural Response for Vented Methane–Air Deflagrations: Effects of Volumetric Blockage Ratio
,”
J. Loss Prevent. Process Ind.
,
66
, pp.
1
8
.
30.
Wen
,
X.
,
Ding
,
H.
,
Su
,
T.
,
Wang
,
F.
,
Deng
,
H.
, and
Zheng
,
K.
,
2017
, “
Effects of Obstacle Angle on Methane–Air Deflagration Characteristics in a Semi-Confined Chamber
,”
J. Loss Prevent. Process Ind.
,
45
, pp.
210
216
.
31.
Park
,
D. J.
,
Lee
,
Y. S.
, and
Green
,
A. R.
,
2008
, “
Experiments on the Effects of Multiple Obstacles in Vented Explosion Chambers
,”
J. Hazard. Mater.
,
153
(
1–2
), pp.
340
350
.
32.
Zhang
,
Z.
,
Wang
,
H.
,
Wang
,
Z.
,
Tian
,
W.
, and
Wang
,
Z.
,
2021
, “
The Effect of Orifice Plates With Different Shapes on Explosion Propagation of Premixed Methane–Air in a Semi-Confined Pipeline
,”
J. Loss Prevent. Process Ind.
,
71
, pp.
1
5
.
33.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.
34.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion. Part II: Dynamic Formulation
,”
Combust. Flame
,
131
(
1–2
), pp.
181
197
.
35.
Tang
,
C.
,
Huang
,
Z.
,
Jin
,
C.
,
He
,
J.
,
Wang
,
J.
,
Wang
,
X.
, and
Miao
,
H.
,
2009
, “
Explosion Characteristics of Hydrogen–Nitrogen–Air Mixtures at Elevated Pressures and Temperatures
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
554
561
.
You do not currently have access to this content.