Abstract

Effects of adiabatic flame temperature (AFT) on stability, combustion, and emission characteristics of swirl-stabilized premixed oxy-methane flames are investigated numerically in a model gas turbine combustor using large-eddy simulations. The oxy-methane flames are investigated over ranges of equivalence ratio (Φ: 0.342–0.954), oxygen fraction (OF: 35%, 50%, and 65%), and adiabatic flame temperatures (AFT: 2100 K, 2300 K, and 2500 K) at fixed inlet velocity of 5.2 m/s with swirled flow at 55 deg under atmospheric pressure. The results show that the shape and size of the inner recirculation zone (IRZ) dominates the flame shape and flame–flow interactions whatever the operating AFT and OF. Almost identical flame shapes with similar OH distributions are obtained at fixed AFT indicating the dominant role of AFT in controlling flame shape and stability of premixed flames. At low to moderate AFTs, the IRZ spreads downstream and becomes stronger resulting in more flame stability and more uniform axial temperature profiles. Fixing the operating AFT does not result in significant changes in temperature profiles due to the similarity of shape and size of the IRZ when fixing the AFT. Flame core temperature, the thickness of the reaction zone, and vorticity increase with AFT at fixed OF and with OF at fixed AFT. The value of the Damköhler number increases in higher AFT and higher OF. Increasing the AFT from 2100 to 2500 K at OF = 65% resulted in an approximately 2.9 time rise in CO emissions.

References

1.
Kumar
,
P.
, and
Nandi
,
B. K.
,
2022
, “
Effects of Mustard Husk, Wheat Straw, and Flaxseed Residue Blending on Combustion Behavior of High Ash Coal and Petroleum Coke Blends
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
092101
.
2.
Ritchie
,
H.
,
Roser
,
M.
, and
Rosado
,
P.
, 2020, “
CO2 and Greenhouse Gas Emissions
,” OurWorldInData.org. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions.
3.
Davis
,
L. B.
2000
,
Dry Low NOX Combustion Systems for GE Heavy-Duty Gas Turbines
,”
ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, Birmingham, UK
.
4.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2020
, “
A Numerical Study to Investigate the Effect of Syngas Composition and Compression Ratio on the Combustion and Emission Characteristics of a Syngas-Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
092301
.
5.
Bouam
,
A.
,
Aissani
,
S.
, and
Kadi
,
R.
,
2008
, “
Combustion Chamber Steam Injection for Gas Turbine Performance Improvement During High Ambient Temperature Operations
,”
J. Eng. Gas Turbines Power
,
130
(
4
), pp.
1
10
.
6.
Bender
,
W. R.
,
n.d.
, “Lean Pre-Mixed Combustion,”
Gas Turbine Handbook
,
NETL
,
Albany, OR
, pp.
217
227
.
7.
Sehat
,
A.
,
Ommi
,
F.
, and
Saboohi
,
Z.
,
2021
, “
Effects of Steam Addition and/or Injection on the Combustion Characteristics: A Review
,”
Therm. Sci.
,
25
(Part A), pp.
1625
1652
.
8.
Boyce
,
M. P.
,
2012
, “Combustors,”
Gas Turbine Engineering Handbook
, 4th ed.,
Elsevier
,
New York
, pp.
427
490
.
9.
Liu
,
R.
,
Graebner
,
M.
,
Tsiava
,
R.
,
Zhang
,
T.
, and
Xu
,
S.
,
2021
, “
Simulation Analysis of the System Integrating Oxy-Fuel Combustion and Char Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032304
.
10.
Hamdy
,
M.
,
Mahmoud
,
M.
,
Aladeb
,
O.
, and
Mokheimer
,
E. M. A.
,
2020
, “
Numerical Study of Enhanced Oil Recovery Using In Situ Oxy-Combustion in a Porous Combustion Tube
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122305
.
11.
Faé Gomes
,
G. M.
,
Vilela
,
A. C. F.
,
da Silva Priebe
,
G. P.
, and
Dalla Zen
,
L.
,
2015
, “
Retrofit of a Bubbling Fluidized Bed Pilot Plant From Air Combustion to Oxyfuel Combustion
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
034501
.
12.
Iwai
,
Y.
,
Itoh
,
M.
,
Morisawa
,
Y.
,
Suzuki
,
S.
,
Cusano
,
D.
, and
Harris
,
M.
,
2015
, “
Development Approach to the Combustor of Gas Turbine for Oxy-Fuel, Supercritical CO2 Cycle
,” Proceedings of the
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
, Vol.
9
,
American Society of Mechanical Engineers
, Paper No. GT2015-43160, pp.
1
7
.
13.
Haque
,
M. A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Mokheimer
,
E. M. A.
, and
Habib
,
M. A.
,
2022
, “
Analysis of Methane, Propane, and Syngas oxy-Flames in a Fuel-Flex Gas Turbine Combustor for Carbon Capture
,”
Int. J. Energy Res.
,
46
(
7
), pp.
8657
8675
.
14.
Rashwan
,
S. S.
,
Abdelkader
,
B.
,
Abdalmonem
,
A.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, et al
,
2022
, “
Experimental and Statistical ANOVA Analysis on Combustion Stability of CH4/O2/CO2 in a Partially Premixed Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062301
.
15.
Roy
,
R.
, and
Gupta
,
A. K.
,
2022
, “
Measurement of Lean Blowoff Limits in Swirl-Stabilized Distributed Combustion With Varying Heat Release Intensities
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082301
.
16.
Saanum
,
I.
, and
Ditaranto
,
M.
,
2017
, “
Experimental Study of Oxy-Fuel Combustion Under Gas Turbine Conditions
,”
Energy Fuels
,
31
(
4
), pp.
4445
4451
.
17.
Xie
,
M.
,
Fu
,
J.
,
Zhang
,
Y.
,
Liu
,
J.
, and
Deng
,
B.
,
2020
, “
Numerical Study on the Auto-ignition Characteristics of Methane Oxy-Fuel Combustion Highly Diluted by CO2
,”
J. Taiwan Inst. Chem. Eng.
,
114
, pp.
176
185
.
18.
Komarov
,
I.
,
Kharlamova
,
D.
,
Makhmutov
,
B.
,
Shabalova
,
S.
, and
Kaplanovich
,
I.
,
2020
, “
Natural Gas-Oxygen Combustion in a Super-Critical Carbon Dioxide Gas Turbine Combustor
,”
E3S Web of Conferences
, Vol.
178
, pp.
1
7
.
19.
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2019
, “
Experimental and Numerical Investigations of Structure and Stability of Premixed Swirl-Stabilized CH4/O2/CO2 Flames in a Model Gas Turbine Combustor
,”
Energy Fuels
,
33
(
3
), pp.
2526
2537
.
20.
Aliyu
,
M.
,
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Said
,
S. A. M.
, and
Habib
,
M. A.
,
2022
, “
Effects of Adiabatic Flame Temperature on Flames’ Characteristics in a Gas-Turbine Combustor
,”
Energy J.
,
243
, p.
123077
.
21.
Aliyu
,
M.
,
Abdelhafez
,
A.
,
Said
,
S. A. M.
,
Habib
,
M. A.
,
Nemitallah
,
M. A.
, and
Mansir
,
I. B.
,
2019
, “
Characteristics of Oxyfuel Combustion in Lean-Premixed Multihole Burners
,”
Energy Fuels
,
33
(
11
), pp.
11948
11958
.
22.
Taamallah
,
S.
,
Chakroun
,
N. W.
,
Watanabe
,
H.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2017
, “
On the Characteristic Flow and Flame Times for Scaling oxy and Air Flame Stabilization Modes in Premixed Swirl Combustion
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3799
3807
.
23.
Haque
,
M. A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Mansir
,
I. B.
, and
Habib
,
M. A.
,
2020
, “
Review of Fuel/Oxidizer-Flexible Combustion in Gas Turbines
,”
Energy Fuels
,
34
(
9
), pp.
10459
10485
.
24.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
, “Swirl Flows,”
Tunbridge Wells
,
Abacus Press
,
England
.
25.
Chen
,
L.
, and
Ghoniem
,
A. F.
,
2012
, “
Simulation of Oxy-Coal Combustion in a 100 KWth Test Facility Using RANS and LES: A Validation Study
,”
Energy Fuels
,
26
(
8
), pp.
4783
4798
.
26.
Porter
,
R.
,
Liu
,
F.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Smith
,
D.
,
2010
, “
Evaluation of Solution Methods for Radiative Heat Transfer in Gaseous oxy-Fuel Combustion Environments
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
14
), pp.
2084
2094
.
27.
Selçuk
,
N.
, and
Kayakol
,
N.
,
1997
, “
Evaluation of Discrete Ordinales Method for Radiative Transfer in Rectangular Furnaces
,”
Int. J. Heat Mass Transfer
,
40
(
2
), pp.
213
222
.
28.
Johansson
,
R.
,
Leckner
,
B.
,
Andersson
,
K.
, and
Johnsson
,
F.
,
2011
, “
Account for Variations in the H2O to CO2 Molar Ratio When Modelling Gaseous Radiative Heat Transfer With the Weighted-Sum-of-Grey-Gases Model
,”
Combust. Flame
,
158
(
5
), pp.
893
901
.
29.
Pashchenko
,
D.
, and
Gnutikova
,
M.
,
2019
, “
Comparative Analysis of the Use of LES and RANS Approaches in 3D Numerical Simulation of Methane Combustion
,”
Proceedings of the 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP)
,
Samara, Russia
,
Sept. 3–6
,
IEEE
, pp.
561
564
.
30.
Nemitallah
,
M. A.
,
Imteyaz
,
B.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2019
, “
Experimental and Computational Study on Stability Characteristics of Hydrogen-Enriched Oxy-Methane Premixed Flames
,”
Appl. Energy
,
250
, pp.
433
443
.
31.
Ghasempour
,
F.
,
Andersson
,
R.
, and
Andersson
,
B.
,
2014
, “
Multidimensional Turbulence Spectra—Statistical Analysis of Turbulent Vortices
,”
Appl. Math. Model.
,
38
(
17–18
), pp.
4226
4237
.
32.
Jiménez
,
J.
,
Wray
,
A. A.
,
Saffman
,
P. G.
, and
Rogallo
,
R. S.
,
1993
, “
The Structure of Intense Vorticity in Isotropic Turbulence
,”
J. Fluid Mech.
,
255
(
1
), pp.
65
90
.
33.
Caracciolo
,
L.
, and
Rubini
,
P. A.
,
2006
, “
Validation of a Partially-Premixed Combustion Model for Gas Turbine Applications
,”
Combustion and Fuels, Education, ASMEDC
,
Barcelona, Spain
,
May 8–11
, Vol.
1
, pp.
731
742
.
34.
Otálvaro-Marín
,
H. L.
, and
Machuca-Martínez
,
F.
,
2020
, “
Sizing of Reactors by Charts of Damköhler’s Number for Solutions of Dimensionless Design Equations
,”
Heliyon
,
6
(
11
), p.
e05386
.
35.
Isaac
,
B. J.
,
Parente
,
A.
,
Galletti
,
C.
,
Thornock
,
J. N.
,
Smith
,
P. J.
, and
Tognotti
,
L.
,
2013
, “
A Novel Methodology for Chemical Time Scale Evaluation With Detailed Chemical Reaction Kinetics
,”
Energy and Fuels
,
27
(
4
), pp.
2255
2265
.
36.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
, et al
,
n.d.
, GRI-MECH 3.0, http://www.me.berkeley.edu/gri_mech/.
37.
Joshi
,
J. B.
,
Nandakumar
,
K.
,
Patwardhan
,
A. W.
,
Nayak
,
A. K.
,
Pareek
,
V.
,
Gumulya
,
M.
,
Wu
,
C.
, et al
,
2019
, “Computational Fluid Dynamics,”
Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment
,
Elsevier
,
New York
, pp.
21
238
.
38.
Ali
,
A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Imteyaz
,
B.
,
Kamal
,
M. M.
, and
Habib
,
M. A.
,
2020
, “
Numerical and Experimental Study of Swirl Premixed CH4/H2/O2/CO2 Flames for Controlled-Emissions gas Turbines
,”
Int. J. Hydrogen Energy
,
45
(
53
), p.
29616
29629
.
39.
Nemitallah
,
M. A.
,
Haque
,
M. A.
,
Abdelhafez
,
A.
,
Said
,
S. A. M.
, and
Habib
,
M. A.
,
2021
, “
Numerical Analysis Supported with Experimental Measurements of Premixed oxy-Propane Flames in a Fuel-Flex gas Turbine Combustor
,”
Int. J. Energy Res.
,
45
(
11
), pp.
16038
16061
.
40.
Lauer
,
M.
,
Zellhuber
,
M.
,
Sattelmayer
,
T.
, and
Aul
,
C. J.
,
2011
, “
Determination of the Heat Release Distribution in Turbulent Flames by a Model Based Correction of OH* Chemiluminescence
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
121501
.
41.
Docquier
,
N.
,
Belhalfaoui
,
S.
,
Lacas
,
F.
,
Darabiha
,
N.
, and
Rolon
,
C.
,
2000
, “
Experimental and Numerical Study of Chemiluminescence in Methane/Air High-Pressure Flames for Active Control Applications
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1765
1774
.
42.
Maidana
,
C. F.
,
Carotenuto
,
A.
, and
Schneider
,
P. S.
,
2010
, “
Analysis of Oxygen-Enhanced Combustion of Gas Power Cycle
,”
Proceeding ENCIT 2010
,
Uberlandia, MG, Brazil
,
Dec. 5–10
, pp.
1
10
.
You do not currently have access to this content.