Abstract

Excessive consumption of fossil fuels has exacerbated global warming and led to an increase in air pollution levels in the environment. The increasing oil demand prompted recent research to explore the future application of alternative, eco-friendly fuels for diesel engines. Jatropha biodiesel has been produced from JCO, using heterogeneous catalyst (CaO) through transesterification process. In this study, the performance and emission characteristics of an engine powered by a Jatropha biodiesel blends have been investigated. The application of response surface methodology (RSM) coupled with Taguchi method for optimization of engine input parameters is promising approach to derive the most accurate optimized models for output responses. Input parameters such as biodiesel blend, load, CR, and FIP were selected, experiments were designed as per L18 orthogonal array in Taguchi, and CCFCD L20 design matrix for RSM methodology. Injection timing is an essential engine characteristic, which has a considerable effect on the ordering emissions. If injection is done early, the starting air temperature and pressure are lower, which means the ignition delay will rise. The ignition delay may begin at any time after the injection begins, resulting in somewhat increased temperature and pressure initially but which then rapidly declines as the ignition delay progresses. The optimal setting of engine input parameters is recorded at 270 bar fuel injection pressure, compression ratio of 18, 7.61 kg load, and 25% blend of Jatropha biodiesel with diesel for optimum BTHE, BMEP, BSFC, Pmax, CO, and NOx emissions. Experimental results are compared with optimum output responses and deviations are found within the accepted range of errors.

References

1.
Agarwal
,
D.
,
Sinha
,
S.
, and
Kumar
,
A.
,
2006
, “
Experimental Investigation of Control of NOx Emissions in Biodiesel-Fueled Compression Ignition Engine
,”
Renew. Energy
,
31
(
14
), pp.
2356
2369
.
2.
Agarwal
,
A. K.
, and
Rajamanoharan
,
K.
,
2009
, “
Experimental Investigations of Performance and Emissions of Karanja Oil and Its Blends in a Single Cylinder Agricultural Diesel Engine
,”
Appl. Energy
,
86
(
1
), pp.
106
112
.
3.
Chukwuezie
,
O. C.
,
Nwaigwe
,
K. N.
,
Asoegwu
,
S. N.
, and
Anyanwu
,
E. E.
,
2014
, “
Diesel Engine Performance of Jatropha Biodiesel: A Review
,”
Biofuels
,
5
(
4
), pp.
415
430
.
4.
Semwal
,
S.
,
Arora
,
A. K.
,
Badoni
,
R. P.
, and
Tuli
,
D. K.
,
2011
, “
Biodiesel Production Using Heterogeneous Catalysts
,”
Bioresour. Technol.
,
102
(
3
), pp.
2151
2161
.
5.
Dhar
,
A.
,
Kevin
,
R.
, and
Kumar
,
A.
,
2012
, “
Production of Biodiesel From High-FFA Neem Oil and Its Performance, Emission and Combustion Characterization in a Single Cylinder DICI Engine
,”
Fuel Process. Technol.
,
97
(
1
), pp.
118
129
.
6.
Yilmaz
,
N.
,
Ileri
,
E.
,
Atmanlı
,
A.
,
Karaoglan
,
A. D.
,
Okkan
,
U.
, and
Sureyya Kocak
,
M.
,
2016
, “
Predicting the Engine Performance and Exhaust Emissions of a Diesel Engine Fueled With Hazelnut Oil Methyl Ester: The Performance Comparison of Response Surface Methodology and LSSVM
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052206
.
7.
Chauhan
,
B. S.
,
Kumar
,
N.
, and
Cho
,
H. M.
,
2012
, “
A Study on the Performance and Emission of a Diesel Engine Fueled With Jatropha Biodiesel Oil and Its Blends
,”
Energy
,
37
(
1
), pp.
616
622
.
8.
Jindal
,
S.
,
Nandwana
,
B. P.
,
Rathore
,
N. S.
, and
Vashistha
,
V.
,
2010
, “
Experimental Investigation of the Effect of Compression Ratio and Injection Pressure in a Direct Injection Diesel Engine Running on Jatropha Methyl Ester
,”
Appl. Therm. Eng.
,
30
(
5
), pp.
442
448
.
9.
Mofijur
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
, and
Atabani
,
A. E.
,
2013
, “
Evaluation of Biodiesel Blending, Engine Performance and Emissions Characteristics of Jatropha Curcas Methyl Ester: Malaysian Perspective
,”
Energy
,
55
(
3
), pp.
879
887
.
10.
Ganapathy
,
T.
,
Gakkhar
,
R. P.
, and
Murugesan
,
K.
,
2011
, “
Influence of Injection Timing on Performance, Combustion and Emission Characteristics of Jatropha Biodiesel Engine
,”
Appl. Energy
,
88
(
12
), pp.
4376
4386
.
11.
Singh
,
A.
,
Sinha
,
S.
,
Choudhary
,
A. K.
,
Panchal
,
H.
,
Elkelawy
,
M.
, and
Sadasivuni
,
K. K.
,
2020
, “
Optimization of Performance and Emission Characteristics of CI Engine Fueled With Jatropha Biodiesel Produced Using a Heterogeneous Catalyst (CaO)
,”
Fuel
,
280
(
2
), p.
118611
.
12.
Elkelawy
,
M.
,
Bastawissi
,
H. A.-E.
,
Esmaeil
,
K. K.
,
Radwan
,
A. M.
,
Panchal
,
H.
,
Sadasivuni
,
K. K.
,
Suresh
,
M.
, and
Israr
,
M.
,
2020
, “
Maximization of Biodiesel Production From Sun Flower and Soybean Oils and Prediction of Diesel Engine Performance and Emission Characteristics Through Response Surface Methodology
,”
Fuel
,
266
(
12
), p.
117072
.
13.
Abuhabaya
,
A.
,
Fieldhouse
,
J.
, and
Brown
,
D.
,
2013
, “
The Effects of Using Biodiesel on CI (Compression Ignition) Engine and Optimization of Its Production by Using Response Surface Methodology
,”
Energy
,
59
(
16
), pp.
56
62
.
14.
Simsek
,
S.
, and
Uslu
,
S.
,
2020
, “
Determination of a Diesel Engine Operating Parameters Powered With Canola, Safflower and Waste Vegetable Oil Based Biodiesel Combination Using Response Surface Methodology (RSM)
,”
Fuel
,
270
(
2
), p.
117496
.
15.
Choudhary
,
A. K.
,
Chelladurai
,
H.
, and
Kannan
,
C.
,
2016
, “
Performance Analysis of Bioethanol (Water Hyacinth) on Diesel Engine
,”
Int. J. Green Energy
,
13
(
13
), pp.
1369
1379
.
16.
Murugapoopathi
,
S.
, and
Vasudevan
,
D.
,
2020
, “
Experimental and Numerical Findings on VCR Engine Performance Analysis on High FFA RSO Biodiesel as Fuel Using RSM Approach
,”
Heat Mass Transfer
,
57
(
3
), pp.
495
513
.
17.
Patel
,
C.
,
Hwang
,
J.
,
Bae
,
C.
, and
Agarwal
,
A. K.
,
2021
, “
Regulated, Unregulated, and Particulate Emissions From Biodiesel Blend Fueled Transportation Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
084501
.
18.
Singh
,
A.
,
Sinha
,
S.
,
Choudhary
,
A. K.
, and
Chelladurai
,
H.
,
2020
, “
Biodiesel Production Using Heterogeneous Catalyst, Application of Taguchi Robust Design and Response Surface Methodology to Optimise Diesel Engine Performance Fuelled With Jatropha Biodiesel Blends
,”
Int. J. Ambient Energy
,
41
(
1
), pp.
1
12
.
19.
Singh
,
D.
,
Sharma
,
D.
,
Soni
,
S. L.
,
Sharma
,
S.
,
Kumar Sharma
,
P.
, and
Jhalani
,
A.
,
2020
, “
A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel
,”
Fuel
,
262
(
10
), p.
116553
.
20.
Patel
,
C.
,
Agarwal
,
A. K.
,
Tiwari
,
N.
,
Lee
,
S.
,
Lee
,
C. S.
, and
Park
,
S.
,
2016
, “
Combustion, Noise, Vibrations and Spray Characterization for Karanja Biodiesel Fuelled Engine
,”
Appl. Therm. Eng.
,
106
(
16
), pp.
506
517
.
21.
Taufiq-Yap
,
Y. H.
,
Lee
,
H. V.
,
Hussein
,
M. Z.
, and
Yunus
,
R.
,
2011
, “
Calcium-Based Mixed Oxide Catalysts for Methanolysis of Jatropha Curcas Oil to Biodiesel
,”
Biomass Bioenergy
,
35
(
2
), pp.
827
834
.
22.
Singh
,
T. S.
, and
Verma
,
T. N.
,
2019
, “
Taguchi Design Approach for Extraction of Methyl Ester From Waste Cooking Oil Using Synthesized CaO as Heterogeneous Catalyst: Response Surface Methodology Optimization
,”
Energy Convers. Manage.
,
182
, pp.
383
397
.
23.
Lee
,
H. V.
,
Yunus
,
R.
,
Juan
,
J. C.
, and
Taufiq-Yap
,
Y. H.
,
2011
, “
Process Optimization Design for Jatropha-Based Biodiesel Production Using Response Surface Methodology
,”
Fuel Process. Technol.
,
92
(
12
), pp.
2420
2428
.
24.
Choudhary
,
A. K.
,
Chelladurai
,
H.
, and
Panchal
,
H.
,
2022
, “
Optimization and Prediction of Engine Block Vibration Using Micro-Electro-Mechanical Systems Capacitive Accelerometer, Fueled With Diesel-Bioethanol (Water-Hyacinth) Blends by Response Surface Methodology and Artificial Neural Network
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
9
), pp.
4631
4647
.
25.
Singh
,
N. K.
,
Singh
,
Y.
,
Sharma
,
A.
, and
Rahim
,
E. A.
,
2020
, “
Prediction of Performance and Emission Parameters of Kusum Biodiesel Based Diesel Engine Using Neuro-Fuzzy Techniques Combined With Genetic Algorithm
,”
Fuel
,
280
(
1
), p.
118629
.
26.
Mittal
,
M.
,
Donahue
,
R.
, and
Winnie
,
P.
,
2015
, “
Evaluating the Influence of Exhaust Back Pressure on Performance and Exhaust Emissions Characteristics of a Multicylinder, Turbocharged, and Aftercooled Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032207
.
27.
Choudhary
,
A. K.
,
Chelladurai
,
H.
, and
Kannan
,
C.
,
2015
, “
Optimization of Combustion Performance of Bioethanol (Water Hyacinth) Diesel Blends on Diesel Engine Using Response Surface Methodology
,”
Arab. J. Sci. Eng.
,
40
(
12
), pp.
3675
3695
.
28.
Kumar
,
V.
, and
Saluja
,
R. K.
,
2020
, “
The Effect of Operating Parameters on Performance and Emissions of DI Diesel Engine Fuelled With Jatropha Biodiesel
,”
Fuel
,
278
(
4
), p.
118256
.
29.
Singh
,
A.
,
Choudhary
,
A. K.
,
Sinha
,
S.
,
Panchal
,
H.
, and
Sadasivuni
,
K. K.
,
2022
, “
Analysis of Vibrations in a Diesel Engine Produced by Jatropha Biodiesel Using Heterogeneous Catalyst
,”
Energy Environ.
,
33
(
1
), p.
0958305X211063935
.
30.
Agarwal
,
A. K.
, and
Dhar
,
A.
,
2010
, “
Comparative Performance, Emission, and Combustion Characteristics of Rice-Bran Oil and Its Biodiesel in a Transportation Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
064503
.
31.
Elkelawy
,
M.
,
El Shenawy
,
E. A.
,
khalaf Abd Almonem
,
S.
,
Nasef
,
M. H.
,
Panchal
,
H.
,
Bastawissi
,
H. A. E.
,
Sadasivuni
,
K. K.
,
Choudhary
,
A. K.
,
Sharma
,
D.
, and
Khalid
,
M.
,
2021
, “
Experimental Study on Combustion, Performance, and Emission Behaviours of Diesel/WCO Biodiesel/Cyclohexane Blends in DI-CI Engine
,”
Process Saf. Environ. Prot.
,
149
(
1
), pp.
684
697
.
32.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
.
33.
Choudhary
,
A. K.
,
Chelladurai
,
H.
, and
Kannan
,
C.
,
2015
, “
Performance Analysis of Diesel Engine Using Bio Ethanol (Water Hyacinth) by Response Surface Methodology (RSM)
,”
Appl. Mech. Mater.
,
737
(
1
), pp.
53
59
. www.scientific.net/amm.737.53
34.
Sarıdemir
,
S.
,
Etem Gürel
,
A.
,
Ağbulut
,
Ü
, and
Bakan
,
F.
,
2020
, “
Investigating the Role of Fuel Injection Pressure Change on Performance Characteristics of a DI-CI Engine Fuelled With Methyl Ester
,”
Fuel
,
271
(
7
), p.
117634
.
35.
Kassaby
,
M. E. L.
, and
Nemit
,
M. A.
,
2013
, “
Studying the Effect of Compression Ratio on an Engine Fueled With Waste Oil Produced Biodiesel/Diesel Fuel
,”
Alexandria Eng. J.
,
52
(
1
), pp.
1
11
.
36.
Sukpancharoen
,
S.
,
Hansirisawat
,
P.
, and
Srinophakun
,
T. R.
,
2022
, “
Implementation of Response Surface to Optimum Biodiesel Power Plant Derived From Empty Fruit Bunch
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012101
.
37.
Sukpancharoen
,
S.
,
Srinophakun
,
T. R.
, and
Aungkulanon
,
P.
,
2020
, “
Grey Wolf Optimizer (GWO) With Multi-Objective Optimization for Biodiesel Production From Waste Cooking Oil Using Central Composite Design (CCD)
,”
Int. J. Mech. Eng. Rob. Res.
,
9
(
8
), p.
1219
.
38.
Kataria
,
J.
,
Mohapatra
,
S. K.
, and
Kundu
,
K.
,
2019
, “
Biodiesel Production From Waste Cooking Oil Using Heterogeneous Catalysts and Its Operational Characteristics on Variable Compression Ratio CI Engine
,”
J. Energy Inst.
,
92
(
2
), pp.
275
287
.
39.
Sharma
,
P.
,
2022
, “
Prediction-Optimization of the Effects of Di-Tert Butyl Peroxide-Biodiesel Blends on Engine Performance and Emissions Using Multi-Objective Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072301
.
40.
Gad
,
M. S.
,
Kamel
,
B. M.
, and
Anjum Badruddin
,
I.
,
2021
, “
Improving the Diesel Engine Performance, Emissions and Combustion Characteristics Using Biodiesel With Carbon Nanomaterials
,”
Fuel
,
288
(
11
), p.
119665
.
41.
Patel
,
C.
,
Lee
,
S.
,
Tiwari
,
N.
,
Agarwal
,
A. K.
,
Lee
,
C. S.
, and
Park
,
S.
,
2016
, “
Spray Characterization, Combustion, Noise and Vibrations Investigations of Jatropha Biodiesel Fuelled Genset Engine
,”
Fuel
,
185
(
1
), pp.
410
420
.
42.
El-Kasaby
,
M.
, and
Nemit-Allah
,
M. A.
,
2013
, “
Experimental Investigations of Ignition Delay Period and Performance of a Diesel Engine Operated With Jatropha Oil Biodiesel
,”
Alexandria Eng. J.
,
52
(
2
), pp.
141
149
.
43.
Debbarma
,
S.
, and
Misra
,
R. D.
,
2017
, “
Effects of Iron Nanoparticles Blended Biodiesel on the Performance and Emission Characteristics of a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042212
.
44.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Auto-ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
45.
Singh
,
Y.
,
Sharma
,
A.
,
Kumar Singh
,
G.
,
Singla
,
A.
, and
Kumar Singh
,
N.
,
2018
, “
Optimization of Performance and Emission Parameters of Direct Injection Diesel Engine Fuelled With Pongamia Methyl Esters-Response Surface Methodology Approach
,”
Ind. Crops Prod.
,
126
(
10
), pp.
218
226
.
46.
Anbarasu
,
A.
,
Karthikeyan
,
A.
, and
Balaji
,
M.
,
2016
, “
Performance and Emission Characteristics of Diesel Engine Using Alumina Nanoparticle Blended Biodiesel Emulsion Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022203
.
47.
Sharma
,
P.
, and
Sharma
,
A. K.
,
2022
, “
Statistical and Continuous Wavelet Transformation-Based Analysis of Combustion Instabilities in a Biodiesel-Fueled Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032304
.
You do not currently have access to this content.