Abstract

Large eddy simulations (LESs) using detailed chemistry and leveraging adaptive mesh refinement (AMR) are performed to gain insights into the combustion dynamics within a full-scale methane–oxygen nonpremixed rotating detonation rocket engine (RDRE) employing impinging discrete injection schemes. In particular, a comparative analysis of two operating conditions corresponding to the same global equivalence ratio but different mass flowrates is carried out to investigate the resultant impact on detonation wave characteristics and RDRE global performance. Multiple co-rotating detonation waves with spatially distributed wave structure and preferential alignment with the inner wall of the annulus (due to asymmetry in fuel distribution) are encountered under both conditions. Both cases exhibit predetonation deflagrative burning in the fill region, while one of the cases shows higher susceptibility to backflow into the feed plenums due to lower plenum pressures. Heat release analysis shows that the thrust obtained from the RDRE is closely linked to the distribution of total heat release between detonative and deflagrative combustion. Conversely, combustion efficiency is associated with the fraction of heat release occurring in fuel-rich versus fuel-lean regions within the RDRE.

References

1.
Wolanski
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.
2.
Tang
,
X.-M.
,
Wang
,
J. P.
, and
Shao
,
Y.-T.
,
2015
, “
Three-Dimensional Numerical Investigations of the Rotating Detonation Engine With the Hollow Combustor
,”
Combust. Flame
,
48
(
4
), pp.
997
1008
.
3.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.
4.
Rankin
,
B.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
,
Naples
,
A. G.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2017
, “
Chemiluminescence Imaging of an Optically Accessible Non-Premixed Rotating Detonation Engine
,”
Combust. Flame
,
176
, pp.
12
22
.
5.
Cho
,
K. Y.
,
Codoni
,
J. R.
,
Rankin
,
B. A.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2016
, “
High-Repetition-Rate Chemiluminescence Imaging of a Rotating Detonation Engine
,”
AIAA Paper
,
San Diego, CA
,
Jan. 2
, p.
1648
.
6.
Fugger
,
C. A.
,
Cho
,
K. Y.
,
Hoke
,
J. L.
,
Gomez
,
M. G.
,
Meyer
,
T.
,
Schumaker
,
S. A.
, and
Caswell
,
A. W.
,
2020
, “
Detonation Dynamics Visualization From Megahertz Imaging
,”
AIAA Paper
,
Orlando, FL
,
Jan. 5
, p.
0441
.
7.
Barratta
,
A. R.
, and
Stout
,
J. B.
,
2020
, “
Demonstrated Low Pressure Loss Inlet and Low Equivalence Ratio Operation of a Rotating Detonation Engine for Power Generation
,”
AIAA Paper
,
Orlando, FL
,
Jan. 5
, p.
1173
.
8.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2006
, “
Continuous Spin Detonations
,”
J. Propul. Power
,
22
(
6
), pp.
1204
1216
.
9.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2008
, “
Continuous Spin Detonations of Hydrogen-Oxygen Mixtures. 1. Annular Cylindrical Combustors
,”
Combust. Explos. Shock Waves
,
44
(
2
), pp.
150
162
.
10.
Frolov
,
S.
,
Aksenov
,
V.
,
Ivanov
,
V.
, and
Shamshin
,
I.
,
2015
, “
Large-Scale Hydrogen-Air Continuous Detonation Combustor
,”
Int. J. Hydrog. Energy
,
40
(
3
), pp.
1616
1623
.
11.
Bigler
,
B. R.
,
Burr
,
J. R.
,
Bennewitz
,
J. W.
,
Danczyk
,
S.
, and
Hargus
,
W. A.
,
2020
, “
Performance Effects of Mode Transitions in a Rotating Detonation Rocket Engines
,”
AIAA Paper
,
virtual
,
Aug. 17
, p.
3852
.
12.
Cocks
,
P. A.
,
Holley
,
A. T.
, and
Rankin
,
B. A.
,
2016
, “
High Fidelity Simulations of a Non-Premixed Rotating Detonation Engine
,”
AIAA Paper
,
San Diego, CA
,
Jan. 2
, p.
0125
.
13.
Gaillard
,
T.
,
Davidenko
,
D.
, and
Dupoireiux
,
F.
,
2017
, “
Numerical Simulation of Rotating Detonation With a Realistic Injector Designed for Separate Supply of Gaseous Hydrogen and Oxygen
,”
Acta Astronaut.
,
141
, pp.
64
78
.
14.
Yellapantula
,
S.
,
Tangirala
,
V.
,
Singh
,
K.
, and
Haynes
,
J.
,
2017
, “
A Numerical Study of H2/Air
Rotating Detonation Combustor
,”
26th International Colloquium on the Dynamics of Explosion and Reactive Systems
,
Boston, MA
,
July 30–Aug. 4
.
15.
Pal
,
P.
,
Kumar
,
G.
,
Drennan
,
S. A.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2021
, “
Multidimensional Numerical Modeling of Combustion Dynamics in a Non-Premixed Rotating Detonation Engine With Adaptive Mesh Refinement
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112308
.
16.
Pal
,
P.
,
Kumar
,
G.
,
Drennan
,
S. A.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2019
, “
Multidimensional Numerical Simulations of Reacting Flow in a Non-Premixed Rotating Detonation Engine
,”
ASME Turbo Expo: Power for Land, Sea, and Air
, Paper No. GT2019-91931.
17.
Pal
,
P.
,
Xu
,
C.
,
Kumar
,
G.
,
Drennan
,
S. A.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2020
, “
Large-Eddy Simulation and Chemical Explosive Mode Analysis of Non-Ideal Combustion in a Non-Premixed Rotating Detonation Engine
,”
AIAA Paper
,
Orlando, FL
,
Jan. 5
, p.
2161
.
18.
Sato
,
T.
,
Chacon
,
F.
,
White
,
L.
,
Raman
,
V.
, and
Gamba
,
M.
,
2021
, “
Mixing and Detonation Structure in a Rotating Detonation Engine With an Axial Air Inlet
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3769
3776
.
19.
Prakash
,
S.
,
Raman
,
V.
,
Lietz
,
C.
,
Hargus
,
W. A.
, and
Schumaker
,
S. A.
,
2020
, “
High Fidelity Simulations of a Methane-Oxygen Rotating Detonation Rocket Engine
,”
AIAA Paper
,
Orlando, FL
,
Jan. 5
, p.
0688
.
20.
Lietz
,
C.
,
Ross
,
M.
,
Desai
,
Y.
, and
Hargus
,
W. A.
,
2020
, “
Numerical Investigation of Operational Performance in a Methane-Oxygen Rotating Detonation Rocket Engine
,”
AIAA Paper
,
Orlando, FL
,
Jan. 5
, p.
0687
.
21.
Matsuyama
,
S.
,
Iwata
,
K.
,
Nunome
,
Y.
,
Tanno
,
H.
,
Mizukaki
,
T.
,
Kojima
,
M.
, and
Kawashima
,
H.
,
2020
, “
Large-Eddy Simulation of Rotating Detonation With a Non-Premixed CH4/O2 Injection
,”
AIAA Paper
,
Orlando, FL
,
Jan. 5
, p.
1174
.
22.
Frolov
,
S. M.
,
Smetanyuk
,
V. A.
,
Ivanov
,
V. S.
, and
Basara
,
B.
,
2019
, “
The Influence of the Method of Supplying Fuel Components on the Characteristics of a Rotating Detonation Engine
,”
Combust. Sci. Technol.
,
193
(
3
), pp.
511
538
.
23.
Prakash
,
S.
,
Raman
,
V.
,
Lietz
,
C.
,
Hargus,
W.
,
Jr.
, and
Schumaker
,
S.
,
2021
, “
Numerical Simulation of a Methane-Oxygen Rotating Detonation Rocket Engine
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3777
3786
.
24.
Strakey
,
P.
, and
Ferguson
,
D. H.
,
2022
, “
Validation of a Computational Fluid Dynamics Model of a Methane-Oxygen Rotating Detonation Engine
,”
AIAA Paper
,
San Diego, CA
,
Dec. 29
, p.
1113
.
25.
Pal
,
P.
,
Demir
,
S.
,
Kundu
,
P.
, and
Som
,
S.
,
2021
, “
Large-Eddy Simulations of Methane-Oxygen Combustion in a Rotating Detonation Rocket Engine
,”
AIAA Paper
,
virtual
,
July 28
, p.
3643
.
26.
Pal
,
P.
,
Xu
,
C.
,
Kumar
,
G.
,
Drennan
,
S.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2020
, “
Large-Eddy Simulations and Mode Analysis of Ethylene/Air Combustion in a Non-Premixed Rotating Detonation Engine
,”
AIAA Paper
,
virtual
,
Aug. 17
, p.
3876
.
27.
Monahan
,
S.
,
Singh
,
K.
, and
Tangirala
,
V.
,
2019
, “
Geometry Parameter Variation for C2H4-Fueled Rotating Detonation Combustor
,”
AIAA Paper
,
Indianapolis, IN
,
Aug. 16
, p.
4043
.
28.
Sato
,
T.
, and
Raman
,
V.
,
2020
, “
Detonation Structure in Ethylene/Air Based Rotating Detonation Engine
,”
J. Propul. Power
,
36
(
5
), pp.
752
762
.
29.
Bennewitz
,
J. W.
,
Bigler
,
B. R.
,
Pilgram
,
J. J.
, and
Hargus
,
W. A.
,
2019
, “
Modal Transitions in Rotating Detonation Rocket Engines
,”
Int. J. Energ. Mater. Chem. Propuls.
,
18
(
2
), pp.
91
109
.
30.
Senecal
,
P. K.
,
Richards
,
K. J.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shethaji
,
T.
,
2007
, “
A New Parallel Cut-Cell CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,”
SAE Technical Paper
,
Detroit, MI
,
Apr. 9–11
, p.
0159
.
31.
Schwer
,
D. A.
, and
Kailasanath
,
K.
,
2012
, “
Feedback Into Mixture Plenums in Rotating Detonation Engines
,”
AIAA Paper
,
Nashville, TN
,
Nov. 6
, p.
0617
.
32.
Shepherd
,
J. E.
,
2009
, “
Detonation in Gases
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
83
98
.
33.
Ziegler
,
J. L.
,
Deiterding
,
R.
,
Shepherd
,
J. E.
, and
Pullin
,
D. I.
,
2011
, “
An Adaptive High-Order Hybrid Scheme for Compressible, Viscous Flows With Detailed Chemistry
,”
J. Comput. Phys.
,
230
(
20
), pp.
7598
7360
.
34.
Burr
,
J. R.
, and
Yu
,
K.
,
2017
, “
Detonation Wave Propagation in Cross-Flow of Discretely Spaced Reactant Jets
,”
AIAA Paper
,
Atlanta, GA
,
July 7
, p.
4908
.
35.
Prakash
,
S.
,
Fievet
,
R.
, and
Raman
,
V.
,
2019
, “
The Effect of Fuel Stratification on the Detonation Wave Propagation Structure
,”
AIAA Paper
,
San Diego, CA
,
Jan. 6
, p.
1511
.
36.
Prakash
,
S.
,
Fievet
,
R.
,
Raman
,
V.
,
Burr
,
J.
, and
Yu
,
K. H.
,
2019
, “
Analysis of the Detonation Wave Structure in a Linearized Rotating Detonation Engine
,”
AIAA J.
,
58
(
12
), pp.
1
15
.
37.
Meneveau
,
C.
,
1997
, “
The Dynamic Smagorinsky Model and Scale-Dependent Coefficients in the Viscous Range of Turbulence
,”
Phys. Fluids
,
9
(
12
), pp.
3932
3934
.
38.
Smith
,
G. P.
,
Zhang
,
Y.
, and
Wang
,
H.
,
2020
, “Foundational Fuel Chemistry Model Version Y (FFCM-Y),” Personal Communication.
39.
Pal
,
P.
,
2016
, “
Computational Modeling and Analysis of Low Temperature Combustion Regimes for Advanced Engine Applications
,”
Ph.D. dissertation
,
University of Michigan
,
Ann Arbor, MI
. https://hdl.handle.net/2027.42/120735
40.
Pal
,
P.
,
Keum
,
S.
, and
Im
,
H. G.
,
2016
, “
Assessment of Flamelet Versus Multi-Zone Combustion Modeling Approaches for Stratified-Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
17
(
3
), pp.
280
290
.
41.
Keum
,
S.
,
Pal
,
P.
,
Im
,
H. G.
,
Babajimopoulos
,
A.
, and
Assanis
,
D. N.
,
2016
, “
Effects of Fuel Injection Parameters on the Performance of Homogeneous Charge Compression Ignition at Low-Load Conditions
,”
Int. J. Engine Res.
,
17
(
4
), pp.
413
420
.
42.
Owoyele
,
O.
, and
Pal
,
P.
,
2021
, “
A Novel Machine Learning-Based Optimization Algorithm (ActivO) for Accelerating Simulation-Driven Engine Design
,”
Appl. Energy
,
285
, p.
116455
.
43.
Owoyele
,
O.
, and
Pal
,
P.
,
2020
, “
A Novel Active Optimization Approach for Rapid and Efficient Design Space Exploration Using Ensemble Machine Learning
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032307
.
44.
Moiz
,
A. A.
,
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Som
,
S.
, and
Kodavasal
,
J.
,
2018
, “
A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Virtual Optimization Using High-Performance Computing
,”
SAE Int. J. Commer. Veh.
,
11
(
5
), pp.
291
306
.
45.
Owoyele
,
O.
,
Pal
,
P.
,
Torreira
,
A. V.
,
Probst
,
D.
,
Shaxted
,
M.
,
Wilde
,
M.
, and
Senecal
,
P. K.
,
2021
, “
Application of An Automated Machine Learning-Genetic Algorithm (AutoML-GA) Coupled With Computational Fluid Dynamics Simulations for Rapid Engine Design Optimization
,”
Int. J. Engine Res.
,
23
(
9
), pp.
1586
1601
.
46.
Probst
,
D. M.
,
Raju
,
M.
,
Senecal
,
P. K.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Som
,
S.
,
Moiz
,
A. A.
, and
Pei
,
Y.
,
2019
, “
Evaluating Optimization Strategies for Engine Simulations Using Machine Learning Emulators
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091011
.
47.
Badra
,
J.
,
Pal
,
P.
,
Pei
,
Y.
, and
Som
,
S.
,
2022
,
Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines
,
Elsevier
,
New York
.
You do not currently have access to this content.