Abstract

Sustainable disposal techniques of municipal solid wastes (MSW) are essential for effective materials recovery and energy management. Synergistic incorporation of gypsum waste from the construction and demolition (C&D) sector is explored here for the low techno-economic viability of MSW in waste-to-energy facilities. Co-processing of MSW with this low-value gypsum can potentially provide improved product recovery and simultaneously furnish economic viability. To understand the impact of gypsum incorporation into MSW conversion, we tested synthetic MSW and a 1:1 mixture of MSW with gypsum from drywall wastes and compared their micro-scale mass loss kinetics along with macro-scale syngas evolution and conversion at different temperatures, and in pyrolytic and oxidizing environments. Gypsum incorporation led to increased syngas production and decreased char yields as the char was oxidized by CaSO4. Thermogravimetric analysis (TGA) revealed two different temperature zones of gypsum interaction with MSW depending on the oxidation concentration in the environment. Adding 50% gypsum only changed the final ash yield by 10% in pyrolysis conditions suggesting the viability of gypsum incorporation. While the addition of gypsum led to delayed evolution of H2 and CO, the cumulative yields of H2 and CO2 increased significantly and the yield of CO changed minimally. Additionally, hydrocarbon by-products such as CH4 decreased by gypsum addition. The results showed improved syngas yield and uniformity, as well as operational conditions from the gypsum interaction with MSW which can help in the further development of gypsum waste incorporation.

References

1.
EPA
,
2019
, Advancing Sustainable Materials Management: Facts and Figures Report, United States Environmental Protection Agency, Washington, DC.
2.
Kersch
,
C.
,
Van Der Kraan
,
M.
,
Woerlee
,
G. F.
, and
Witkamp
,
G. J.
,
2002
, “
Municipal Waste Incinerator Fly Ash: Supercritical Fluid Extraction of Metals
,”
J. Chem. Technol. Biotechnol.
,
77
(
3
), pp.
256
259
.
3.
Kersch
,
C.
,
Peretó Ortiz
,
S.
,
Woerlee
,
G. F.
, and
Witkamp
,
G. J.
,
2004
, “
Leachability of Metals From Fly Ash: Leaching Tests Before and After Extraction With Supercritical CO2 and Extractants
,”
Hydrometallurgy
,
72
(
1–2
), pp.
119
127
.
4.
Chiang
,
Y. W.
,
Santos
,
R. M.
,
Vanduyfhuys
,
K.
,
Meesschaert
,
B.
, and
Martens
,
J. A.
,
2014
, “
Atom-Efficient Route for Converting Incineration Ashes Into Heavy Metal Sorbents
,”
ChemSusChem
,
7
(
1
), pp.
276
283
.
5.
Igarashi
,
M.
,
Hayafune
,
Y.
,
Sugamiya
,
R.
,
Nakagawa
,
Y.
, and
Makishima
,
K.
,
1984
, “
Pyrolysis of Municipal Solid Waste in Japan
,”
ASME J. Energy Resour. Technol.
,
106
(
3
), pp.
377
382
.
6.
Wu
,
C.
, and
Williams
,
P. T.
,
2010
, “
Pyrolysis–Gasification of Plastics, Mixed Plastics and Real-World Plastic Waste With and Without Ni–Mg–Al Catalyst
,”
Fuel
,
89
(
10
), pp.
3022
3032
.
7.
Wu
,
C.
, and
Williams
,
P. T.
,
2010
, “
Pyrolysis–Gasification of Post-Consumer Municipal Solid Plastic Waste for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
35
(
3
), pp.
949
957
.
8.
Jin
,
Y. Q.
,
Ma
,
X. J.
,
Jiang
,
X. G.
,
Liu
,
H. M.
,
Li
,
X. D.
,
Yan
,
J. H.
, and
Cen
,
K. F.
,
2013
, “
Effects of Hydrothermal Treatment on the Major Heavy Metals in Fly Ash From Municipal Solid Waste Incineration
,”
Energy Fuels
,
27
(
1
), pp.
394
400
.
9.
Hu
,
Y.
,
Zhang
,
P.
,
Li
,
J.
, and
Chen
,
D.
,
2015
, “
Stabilization and Separation of Heavy Metals in Incineration fly Ash During the Hydrothermal Treatment Process
,”
J. Hazard. Mater.
,
299
(
1
), pp.
149
157
.
10.
Ferrándiz-Mas
,
V.
,
Bond
,
T.
,
García-Alcocel
,
E.
, and
Cheeseman
,
C. R.
,
2014
, “
Lightweight Mortars Containing Expanded Polystyrene and Paper Sludge Ash
,”
Constr. Build. Mater.
,
61
(
1
), pp.
285
292
.
11.
Shang
,
L.
,
Wang
,
S.
,
Zhang
,
Y.
, and
Zhang
,
Y.
,
2011
, “
Pyrolyzed Wax From Recycled Cross-Linked Polyethylene as Warm Mix Asphalt (WMA) Additive for SBS Modified Asphalt
,”
Constr. Build. Mater.
,
25
(
2
), pp.
886
891
.
12.
Rożek
,
P.
,
Król
,
M.
, and
Mozgawa
,
W.
,
2019
, “
Solidification/Stabilization of Municipal Solid Waste Incineration Bottom Ash Via Autoclave Treatment: Structural and Mechanical Properties
,”
Constr. Build. Mater.
,
202
, pp.
603
613
.
13.
Wu
,
S.
,
Wang
,
W.
,
Ren
,
C.
,
Yao
,
X.
,
Yao
,
Y.
,
Zhang
,
Q.
, and
Li
,
Z.
,
2019
, “
Calcination of Calcium Sulphoaluminate Cement Using Flue Gas Desulfurization Gypsum as Whole Calcium Oxide Source
,”
Constr. Build. Mater.
,
228
(
1
), p.
116676
.
14.
Yin
,
Y.
,
Yin
,
J.
,
Zhang
,
W.
,
Tian
,
H.
,
Hu
,
Z.
,
Ruan
,
M.
,
Song
,
Z.
, and
Liu
,
L.
,
2018
, “
Effect of Char Structure Evolution During Pyrolysis on Combustion Characteristics and Kinetics of Waste Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072203
.
15.
Wang
,
B.
,
Pan
,
Z.
,
Cheng
,
H.
,
Guan
,
Y.
,
Zhang
,
Z.
, and
Cheng
,
F.
,
2020
, “
CO2 Sequestration: High Conversion of Gypsum Into CaCO3 by Ultrasonic Carbonation
,”
Environ. Chem. Lett.
,
18
(
4
), pp.
1369
1377
.
16.
Xia
,
X.
,
Zhang
,
L.
,
Li
,
Z.
,
Yuan
,
X.
,
Ma
,
C.
,
Song
,
Z.
, and
Chen
,
G.
,
2022
, “
Recovery of CaO From CaSO4 Via CO Reduction Decomposition Under Different Atmospheres
,”
J. Environ. Manage.
,
301
(
1
), p.
113855
.
17.
Azdarpour
,
A.
,
Asadullah
,
M.
,
Junin
,
R.
,
Manan
,
M.
,
Hamidi
,
H.
, and
Mohammadian
,
E.
,
2014
, “
Direct Carbonation of Red Gypsum to Produce Solid Carbonates
,”
Fuel Process. Technol.
,
126
(
1
), pp.
429
434
.
18.
Nowak
,
P.
,
Muir
,
B.
,
Solinska
,
A.
,
Franus
,
M.
, and
Bajda
,
T.
,
2021
, “
Synthesis and Characterization of Zeolites Produced From Low-Quality Coal Fly Ash and Wet Flue Gas Desulphurization Wastewater
,”
Materials (Basel)
,
14
(
6
), p.
1558
.
19.
Piotrowska
,
P.
,
Rebbling
,
A.
,
Lindberg
,
D.
,
Backman
,
R.
,
Öhman
,
M.
, and
Boström
,
D.
,
2015
, “
Waste Gypsum Board and Ash-Related Problems During Combustion of Biomass. 1. Fluidized Bed
,”
Energy Fuels
,
29
(
2
), pp.
877
893
.
20.
Głód
,
K.
,
Lasek
,
J.
,
Słowik
,
K.
,
Zuwała
,
J.
,
Nabagło
,
D.
,
Jura
,
K.
, and
Żyrkowski
,
M.
,
2020
, “
Investigation of Ash-Related Issues During Combustion of Maize Straw and Wood Biomass Blends in Lab-Scale Bubbling Fluidized Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022201
.
21.
Rebbling
,
A.
,
Näzelius
,
I. L.
,
Piotrowska
,
P.
,
Skoglund
,
N.
,
Boman
,
C.
,
Boström
,
D.
, and
Öhman
,
M.
,
2016
, “
Waste Gypsum Board and Ash-Related Problems During Combustion of Biomass. 2. Fixed Bed
,”
Energy Fuels
,
30
(
12
), pp.
10705
10713
.
22.
Kato
,
T.
,
Murakami
,
K.
, and
Sugawara
,
K.
,
2012
, “
Carbon Reduction of Gypsum Produced From Flue Gas Desulfurization
,”
Chem. Eng. Trans.
,
29
(
1
), pp.
805
810
.
23.
Jia
,
X.
,
Wang
,
Q.
,
Cen
,
K.
, and
Chen
,
L.
,
2016
, “
An Experimental Study of CaSO4 Decomposition During Coal Pyrolysis
,”
Fuel
,
163
(
1
), pp.
157
165
.
24.
Oh
,
J. S.
, and
Wheelock
,
T. D.
,
1990
, “
Reductive Decomposition of Calcium Sulfate With Carbon Monoxide: Reaction Mechanism
,”
Ind. Eng. Chem. Res.
,
29
(
4
), pp.
544
550
.
25.
Swift
,
W. M.
,
Panek
,
A. F.
,
Smith
,
G. W.
,
Vogel
,
G. J.
, and
Janke
,
A. A.
,
1976
, Decomposition of Calcium Sulfate: A Review of the Literature, U.S. Department of Energy, Office of Scientific and Technical Information, Washington, DC, pp.
1
64
.
26.
Tan
,
W.
,
Zhang
,
Z.
,
Li
,
H.
,
Li
,
Y.
, and
Shen
,
Z.
,
2017
, “
Carbonation of Gypsum From Wet Flue Gas Desulfurization Process: Experiments and Modeling
,”
Environ. Sci. Pollut. Res.
,
24
(
9
), pp.
8602
8608
.
27.
Singh
,
P.
,
Déparrois
,
N.
,
Burra
,
K. G.
,
Bhattacharya
,
S.
, and
Gupta
,
A. K.
,
2019
, “
Energy Recovery From Cross-Linked Polyethylene Wastes Using Pyrolysis and CO2 Assisted Gasification
,”
Appl. Energy
,
254
(
1
), p.
113722
.
28.
Burra
,
K. G.
,
Hussein
,
M. S.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2016
, “
Syngas Evolutionary Behavior During Chicken Manure Pyrolysis and Air Gasification
,”
Appl. Energy
,
181
(
1
), pp.
408
415
.
29.
Policella
,
M.
,
Wang
,
Z.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Characteristics of Syngas From Pyrolysis and CO2-Assisted Gasification of Waste Tires
,”
Appl. Energy
,
254
(
1
), p.
113678
.
30.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Syngas Characteristics From Catalytic Gasification of Polystyrene and Pinewood in CO2 Atmosphere
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052304
.
31.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Influence of Char Intermediates on Synergistic Effects During Co-pyrolysis of Pinewood and Polycarbonate
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052107
.
You do not currently have access to this content.